Skip to main content

Sequencing

  • Chapter
  • 947 Accesses

Part of the book series: Springer Lab Manual ((SLM))

Abstract

Knowledge of the DNA primary sequence leads to a closer understanding of the structural organization of DNA, the deduction of an amino acid sequence and allows for the analysis of (clinically relevant) mutations. The first sequencing methods were quite labor-intensive and time-consuming (Wu and Taylor 1971; Robertson et al. 1973; Sanger et al. 1973; Ziff et al. 1973). However, two rapid and universally applicable methods have emerged: Maxam and Gilbert used chemical agents producing defined fragments of DNA (Maxam and Gilbert 1977). These fragments are made visible by Polyacrylamide gel electrophoresis using radioactive markers. The original DNA sequence can be deduced from the length of fragments formed. The second technique has been developed by Sanger in 1977 (Sanger et al. 1977). This method, the chain termination method, is most widely used nowadays, and is based on enzymatic steps (Davis et al. 1986; Sambrook et al. 1989; Ausubel et al. 1990).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ausubel R, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1990) Current protocols in molecular biology, Volumes 1 and 2. Greene Publishing Associates and Wiley-Interscience

    Google Scholar 

  • Barnes WM, Bevan M, Son PH (1983) Kilo-sequencing: creation of an ordered nest of asymmetric deletions across a large target sequence carried on phage M13. Methods Enzymol 101:98

    Article  PubMed  CAS  Google Scholar 

  • Biggin MD, Gibson TJ, Hong GF (1983) Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U.S.A. 80:3963

    Article  PubMed  CAS  Google Scholar 

  • Church GM, Kieffer-Higgins S (1988) Multiplex DNA Sequencing. Science 240:185

    Article  PubMed  CAS  Google Scholar 

  • Davis LG, Dibner MD, Battey JF (eds) (1986) Basic methods in molecular biology. Elsevier Science Publishing Co., Inc., New York

    Google Scholar 

  • Gough JA, Murray NE (1983) Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol 166:1

    Article  PubMed  CAS  Google Scholar 

  • Graham A, Steven J, McKechnie D, Harris WJ (1986) Direct DNA sequencing using avian myeloblastosis virus and Moloney murine leukemia virus reverse transcriptase. Bethesda Res Lab Focus 8(2):4

    Google Scholar 

  • Innis MA, Myambo KB, Gelfand DH, Brow MAD (1988) DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci U.S.A. 85:9436

    Article  PubMed  CAS  Google Scholar 

  • Karanthanasis S (1982) M13 DNA sequencing using reverse transcriptase. Bethesda Res Lab Focus 4(3):6

    Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U.S.A. 74:560

    Article  PubMed  CAS  Google Scholar 

  • Mead DA, Kemper B (1986) in Vectors: A Survey of molecular cloning vectors and their uses. Butterworth Publishers, Massachusetts USA

    Google Scholar 

  • Messing J, Gronenborn B, Muller-Hill B, Hofschneider PH (1977) Filamentous coliphage M13 as a cloning vehicle. Insertion of a HincII fragment of the lac regulatory region in M13 replicative form in vitro. Proc Natl Acad Sci U.S.A. 74:3642–3646

    Article  PubMed  CAS  Google Scholar 

  • Mierendorf RC, Pfeffer D (1987) Direct sequencing of denatured plasmid DNA. Methods Enzymol 152:556

    Article  PubMed  CAS  Google Scholar 

  • Mizusawa S, Nishimura S, Seela F (1986) Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Res 14:1319

    Article  PubMed  CAS  Google Scholar 

  • Prober JJ, Trainor GL, Dam RJ, Hobbs FW, Robertson CW, Zagursky RJ, Cocuzza AJ, Jensen MA, Baumeister K (1987) A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 238:336

    Article  PubMed  CAS  Google Scholar 

  • Robertson HD, Barrel BG, Weith HL, Donelson JE (1973) Isolation and sequence analysis of a ribosome-protected fragment from bacteriophage phiX 174 DNA. Nature New Biol 241:38

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular Cloning, a laboratory manual. 2nd edition. Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Sanger F, Donelson JE, Coulson AR, Kössel H, Fischer D (1973) Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage f1 DNA. Proc Natl Acad Sci U.S.A. 70:1209

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitiors. Proc Natl Acad Sci U.S.A. 74:5463

    Article  PubMed  CAS  Google Scholar 

  • Tabor S, Richardson CC (1987) DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U.S.A. 84:4767

    Article  PubMed  CAS  Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmid, an M13mp7 derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Article  PubMed  CAS  Google Scholar 

  • Wilson RK, Yuen AS, Clark SM, Spence C, Arakelian P, Hood LE (1988) Automation of dideoxynucleotide DNA sequencing reactions using a robotic workstation. BioTechniques 6(8):776

    PubMed  CAS  Google Scholar 

  • Wu R, Grossmann L, Maldave K (eds), Messing J (1983) Methods in Enzymology 101 (part C): Recombinant DNA. Academic Press, New York

    Google Scholar 

  • Wu R, Taylor E (1971) Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. J Mol Biol 57:491

    Article  PubMed  CAS  Google Scholar 

  • Ziff EB, Sedat JW, Galibert F (1973) Determination of the nucleotide sequence of a fragment of bacteriophage phiX 174 DNA. Nature New Biol 241:34

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deichmann, K. (1999). Sequencing. In: Hildebrandt, F., Igarashi, P. (eds) Techniques in Molecular Medicine. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59811-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59811-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-47808-6

  • Online ISBN: 978-3-642-59811-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics