Corrosion Resistance and Biocompatibility of Passivated NiTi

  • Christine Trepanier
  • Ramakrishna Venugopalan
  • Alan R. Pelton

Abstract

Equiatomic nickel-titanium (NiTi) or Nitinol possess a unique combination of properties, including superelasticity and shape memory, which are very attractive for biomedical applications. NiTi has been used in orthopedic and orthodontic implants for several decades and has contributed to significant improvements in these fields [1, 2]. This alloy is rapidly becoming the material of choice for selfexpanding stents, graft support systems, filters, baskets and various other devices for minimally invasive interventional procedures (Fig. 1) [1,3]. While the superior performance of NiTi over conventional engineering materials for implants is well documented [1,4,5], the high nickel content of the alloy (55 weight % Ni) and itspossible influence on biocompatibility continues to be an issue of concern. This concern is further complicated by the conflicting literature on corrosion resistance.

Keywords

Fatigue Titanium Nickel Toxicity Chromium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duerig TW, Pelton AR, Stockel D (1996) The utility of superelasticity in medicine. Biomed Mater Eng 6:255–266PubMedGoogle Scholar
  2. 2.
    Haasters J, Salis-Solio G, Bonsmann G (1990) The use of Ni-Ti as an implant material in orthopedics. In: Duerig TW, Melton KN, Stockel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth-Heinemann, Boston, pp 426–444Google Scholar
  3. 3.
    Frank TG, Xu W, Cuschieri A (1997) Shape memory applications in minimal access surgery - the Dundee experience. In: Pelton AR, Hodgson D, Russell SM, Duerig TW (eds) Proceedings of SMST 1997. Shape Memory and Superelastic Technologies, Pacific Grove, pp 509–514Google Scholar
  4. 4.
    Shabalovskaya SA (1996) On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Biomed Mater Eng 6:267–289PubMedGoogle Scholar
  5. 5.
    Lu S (1990) Medical applications of Ni-Ti in China. In: Duerig TW, Melton KN, Stockel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth-Heinemann, pp 445-451Google Scholar
  6. 6.
    Anke M, Groppel B, Kronemann H, Grun M (1984) Nickel - an essential element. In: Saunderman FW (ed) Nickel in the human environment. International Agency for Research on Cancer, Lyon, pp 339–366Google Scholar
  7. 7.
    Williams DF (1981) Toxicology of implanted metals. (Fundamental aspects of biocompatibility, vol 2) CRC, Boca Raton, pp 45–61Google Scholar
  8. 8.
    Bass JK, Fine H, Cisneros GJ (1993) Nickel hypersensitivity in the orthodontic patent. Am J Orthod Dentofacial Orthop 103:280–285PubMedCrossRefGoogle Scholar
  9. 9.
    Takamura K, Hayashi K, Ishinishi N, Sugioka Y (1994) Evaluation of carcinogenecity and chronic toxicity associated with orthopedic implants in mice. J Biomed Mater Res 28:583–589PubMedCrossRefGoogle Scholar
  10. 10.
    Liotta D (1998) Assisted circulation for end-stage chronic heart failure. Artif Organs 22:230–236PubMedCrossRefGoogle Scholar
  11. 11.
    Brown SA, Hughes PJ, Merritt K (1988) In vitro studies of fretting corrosion of orthopaedic materials. J Orthop Res 6:572–579PubMedCrossRefGoogle Scholar
  12. 12.
    Speck KM, Fraker AC (1980) Anodic polarization behavior of Ti-Ni and Ti-6A1-4V in simulated physiological solutions. J Dent Res 59:1590–1595PubMedCrossRefGoogle Scholar
  13. 13.
    Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelley KK (1973) Selected values of the thermodynamic properties of binary alloys. American Society for Metals, Materials Park, pp 1244–1246Google Scholar
  14. 14.
    American Society for Testing and Materials F86 (1995) Standard practice for surface preparation and marking of metallic surgical implants. In: ASTM (ed) Annual book of ASTM standards. (Medical devices and services, vol 13.01) American Society for Testing and Materials, Philadelphia, pp 6–8Google Scholar
  15. 15.
    Wever D J, Veldhuizen AG, DeVries J, Busscher HJ, Uges DRA, vanHorn JR (1998) Electrochemical and surface characterization of a nickel-titanium alloy. Biomaterials 19:761–769PubMedCrossRefGoogle Scholar
  16. 16.
    Trepanier C, Tabrizian M, Yahia L’H, Bilodeau L, Piron DL (1998) Effect of the modification of the oxide layer on NiTi stent corrosion resistance. J Biomed Mater Res 43:433–440PubMedCrossRefGoogle Scholar
  17. 17.
    Trigwell S, Selvaduray G (1997) Effects of surface finish on the corrosion of NiTi alloy for biomedical applications. In: Pelton AR, Hodgson D, Russell SM, Duerig TW (eds) Proceedings of SMST 1997. Shape Memory and Superelastic Technologies, Pacific Grove, pp 383–388Google Scholar
  18. 18.
    American Society for Testing and Materials G5 (1995) Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements. In: ASTM (ed) Annual book of ASTM standards. (Medical devices and services, vol 03.02) American Society for Testing and Materials, Philadelphia, pp 48–58Google Scholar
  19. 19.
    Venugopalan R (1999) Corrosion testing of stents: A novel fixture to hold entire device in deployed form and finish. J Biomed Mater Res 48:829–832PubMedCrossRefGoogle Scholar
  20. 20.
    Venugopalan R, Trepanier C, Pelton AR, Lucas LC (1999) Comparative electrochemical behavior of NiTi and 316L stainless steel. In: Society for Biomaterials (ed) Proceedings of the 25th annual meeting of the Society for Biomaterials and the 31st International Biomaterials Symposium. Society for Biomaterials, Providence, p 144Google Scholar
  21. 21.
    American Society for Testing and Materials F746 (1995) Standard test method for pitting or crevice corrosion of metallic surgical implant materials. In: ASTM (ed) Annual book of ASTM standards. (Medical devices and services, vol 13.01) American Society for Testing and Materials, Philadelphia, pp 192–197Google Scholar
  22. 22.
    Chan CM, Trigwell S, Duerig T (1990) Oxidation of a NiTi alloy. Surface Interface Anal 15:349–354CrossRefGoogle Scholar
  23. 23.
    Lausmaa J, Mattsson L, Rolander U, Kasemo B (1986) Chemical composition and morphology of titanium surface oxides. (Materials Research Society Symposium Proceedings, vol 55) Materials Research Society, Pittsburgh, pp 351–359Google Scholar
  24. 24.
    Espinos JP, Fernandez A, Gonzalez-Elipe AR (1993) Oxidation and diffusion processes in nickeltitanium oxide systems. Surface Sci 295:420–410CrossRefGoogle Scholar
  25. 25.
    Kimura H, Sohmura T (1987) Surface coating on TiNi Shape memory implant alloys. J Osaka Univ Dent Sch 27:211–223PubMedGoogle Scholar
  26. 26.
    Barrett RD, Bishara SE, Quinn JK (1993) Bio degradation of orthodontic appliances. Part I. Biodegradation of nickel and chromium in vitro. Am J Orthod Dentofacial Orthop 103:8–14PubMedCrossRefGoogle Scholar
  27. 27.
    Bishara SE, Barrett RD, Selim MI (1993) Biodegradation of orthodontic appliances. Part II. Changes in the blood level of nickel. Am J Orthod Dentofacial Orthop 103:115–119PubMedCrossRefGoogle Scholar
  28. 28.
    Ryhanen J, Niemi E, Serlo W, Niemela E, Sandvik P, Pernu H, Salo T (1997) Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res 35:451–457PubMedCrossRefGoogle Scholar
  29. 29.
    Jia W, Beatty MW, Reinhardt RA, Petro TM, Cohen DM, Maze CR, Strom EA, Hoffman M (1999) Nickel release from orthodontic arch wires and cellular immune response to various nickel concentrations. J Biomed Mater Res 48:488–495PubMedCrossRefGoogle Scholar
  30. 30.
    Wever DJ, Veldhuizen AG, Sanders MM, Schakenraas JM, vanHorn JR (1997) Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials 18:1115–1120PubMedCrossRefGoogle Scholar
  31. 31.
    Assad M, Yahia L’H, Rivard CH, Lemieux N (1998) In vitro biocompatibility assessment of a nickel-titanium alloy using electron microscopy in situ end labeling (EM-ISEL). J Biomed Mater Res 44:154–161CrossRefGoogle Scholar
  32. 32.
    Cutright DE, Bashker SN, Perez B, Johnson RM, Cowan Jr GSM (1973) Tissue reaction to nitinol wire alloy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 35:578–584Google Scholar
  33. 33.
    Castleman LS, Motzkin SM, Alicandri SM, Bonawit VL (1976) Biocompatibility of nitinol alloy as an implant material. J Biomed Mater Res 10:695–731PubMedCrossRefGoogle Scholar
  34. 34.
    Trepanier C, Leung TK, Tabrizian M, Yahia L’H, Bienvenu J-G, Tanguay J-F, Piron DL, Bilodeau L (1999) Preliminary investigation of the effects of surface treatments on the biological response to shape memory NiTi stents. J Biomed Mater Res 48:165–171PubMedCrossRefGoogle Scholar
  35. 35.
    Ryhanen J, Kallioinen M, Tuukkanen J, Junila J, Niemela E, Sandvik P, Serlo W (1998) In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: muscle and perineural tissue responses and encapsule membrane thickness. J Biomed Mater Res 41:481–488PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Christine Trepanier
  • Ramakrishna Venugopalan
  • Alan R. Pelton

There are no affiliations available

Personalised recommendations