Shape-Memory Alloy for Interventional Stenting in View of its Development in China

  • Mi Xujun
  • Zhu Ming
  • Guo Jinfang
  • Yuan Guansen


Interventional stenting is the clinical practice of interventional delivery of stent or stent graft (prosthesis) into human vascular or non-vascular vessel lumen either as a scaffolding device to treat luminar stricture, stenosis or restenosis following local pathologies or anatomical complications or for the purpose of fluid redistribution as in case of vascular aneurysm or dissection. As a significant branch of interventional medicine (IVM) and a complementary approach to balloon dilatation surgery, this technology of minimally invasive surgery (MIS) has been extensively applied in different sectors of the medical circle in recent decades to treat urethra-prostatic [1, 2], esophagea l [3], tracheal [4], biliary [5, 6] and also vascular constriction [7, 8] and aneurysmal pathologies [9-11], thanks to fruitful experimental and clinic explorations, latest progresses in monitoring technologies such as roentgenography, ultrasonography, computer tomography (CT), magnetic resonance imaging (MRI), digital subtraction imaging (DSI) as well as structural and material innovations with the stent-graft itself.


Shape Memory Shape Memory Alloy Minimally Invasive Surgery Stent Design Malignant Biliary Obstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fabian KM (1980) Der Introprostaticsche “partielle katheter” (urologische spiral). Urologe A 10:236–238Google Scholar
  2. 2.
    Joseph EO (1991) The obstructive prostate and the intraurethral stent. Contemp Urol Jan 1991:61–70Google Scholar
  3. 3.
    Watkinson AF, Ellul J, Entwisle K, Mason RC, Adam A (1995) Esophageal carcinoma: initial results of palliative treatment with covered self-expanding endoprosthesis. Radiology 195:821–827PubMedGoogle Scholar
  4. 4.
    Johnston MR, Loeber N, Hillyer P, Stephenson LW, Edmunds LH Jr(1980) External stent for repair of secondary tracheomalacia. Ann Thorac Surg 30:291–296PubMedCrossRefGoogle Scholar
  5. 5.
    Lammer J, Klein GE, Kleinert R, Hausegger K, Einspieler R (1990) Obstructive jaundice: use of expandable metal endoprosthesis for biliary drainage. Radiology 177:789–791PubMedGoogle Scholar
  6. 6.
    Gordon RL, Ring EJ, LaBerge JM, Doherty MM (1992) Malignant biliary obstruction: treatment with expandable metallic stents - follow-up of 50 consecutive patients. Radiology 182:697–700PubMedGoogle Scholar
  7. 7.
    Schatz RA, Baim DS, Leon M, Ellis SG, Goldberg S, Hirshfeld JW, Cleman MW, Cabin HS, Walker C, Stagg J, et al. (1991) Clinical experience with the Palmaz-Schatz coronary stent. Circulation 83:148–150PubMedGoogle Scholar
  8. 8.
    LaBerge JM, Ring EJ, Gordon RL, Lake JR, Doherty MM, Somberg KA, Roberts JP, Ascher NL (1993) Creation of transjugular intrahepatic portosystemic shunts with Wallstent endoprosthesis: results in 100 patients. Radiology 187:413–416PubMedGoogle Scholar
  9. 9.
    Blum R, Voshage G, Lammer J, Beyersdorf F, Tollner D, Kretschmer G, Spillner G, Polterauer P, Nagel G, Holzenbein T (1997) Endoluminal stent-grafts for infrarenal abdominal aortic aneurysms. N Engl J Med 336:13–20PubMedCrossRefGoogle Scholar
  10. 10.
    Ahn SS, Obrand DI (1998) Current status of intraluminal grafts for aortic aneurysms. Vase Surg 32:215–219Google Scholar
  11. 11.
    Chuter TA, Wendt G, Hopkinson BR, Scott RA, Risberg B, Walker PJ, White G (1995) Transfemoral insertion of a bifurcated endovascular graft for aortic aneurysm repair: the first 22 patients. Cardiovasc Surg 3:121–128PubMedCrossRefGoogle Scholar
  12. 12.
    Wu KH (1997) Development and future of intravascular stents. In: Chu YY, Otsuka K (eds) Proceedings of the China-Japan Bilateral Symposium on Shape-Memory Alloys, Hangzhou, China. International Academic Publishers, Beijing pp 229–241Google Scholar
  13. 13.
    Steven AK (1993) Can a stent succeed in keeping the prostatic urethra open. Contemporary Urology April 1933:19–33Google Scholar
  14. 14.
    Banerjee R, Nageswari K, Puniyani RR (1997) Hematological aspects of biocompatibility: review article. J Biomater Appl 12:57–76PubMedGoogle Scholar
  15. 15.
    Robert BS (1998) Presidential addresses: the foundations of modern aortic surgery. J Vase Surg 27:7–15CrossRefGoogle Scholar
  16. 16.
    Sean PG, Michael MT (1996) Assessment of encrustation behavior on urinary tract biomaterials. J Biomater Appl 12:136–166Google Scholar
  17. 17.
    Holmes SAV (1992) Encrustation of intraprostatic stents: a comparative study. Br J Urol 69:383–387PubMedCrossRefGoogle Scholar
  18. 18.
    Williams DF (1982) Bio compatibilities of clinically implemented matererials. CRC, Boca Raton, pp 145–150Google Scholar
  19. 19.
    Xue M, Chen XX, Li YM, et al (1981) Basic study of NiTi shape memory alloy-stimulating corrosion test. Stomatology 1:40–43Google Scholar
  20. 20.
    Xue M, Li YM, Gu GZ, et al (1983) Basic study of NiTi shape memory alloy. Chinese J Biomed Eng 2:28–33Google Scholar
  21. 21.
    Xue M, Jia WT (1986) Application of NiTi shape memory alloy to medicine and dentistry. In: Chu YY, et al. (eds) Proceedings of the International Symposium on Shape Memory Alloys, Guilin, China, pp 411-415Google Scholar
  22. 22.
    Bao YY (1983) A clinical study of orthodontic application of NiTi alloy. Chin J Stomatol 18:15–17Google Scholar
  23. 23.
    Lu SB, et al (1986) Treatment of scoliosis with shape memory alloy rod. Chung Hua Wai Ko Tsa Chih 24:129–132PubMedGoogle Scholar
  24. 24.
    Dai KR (1983) Orthopaedic application of shape memory compression staple. Chung Hua Wai Ko Tsa Chih 21:343–345PubMedGoogle Scholar
  25. 25.
    Xue M, Guo JF, Shen L, et al (1993) Application of NiTi shape memory alloy on maxillofacial surgery. Stomatology 13:131–132Google Scholar
  26. 26.
    Qiu CY (1991) Titanium-nickel alloy stent for urethrostenosis caused by prostatauxe. Chung Hua Wai Ko Tsa Chih 29:369–371Google Scholar
  27. 27.
    Qiu CY (1993) Shape memory alloy spiral for urethrostenosis caused by benign prostatic hyperplasia. Chung Hua Wai Ko Tsa Chih 31:272–274PubMedGoogle Scholar
  28. 28.
    Wang XF, Zhu J, Hou S (1996) Mesh-like tubular stent treatment for chronic urinary retention caused by BPH. Chung Hua Wai Ko Tsa Chih 24:107–109Google Scholar
  29. 29.
    Dong ZJ (1993) The nickel titanium alloy esophageal stent. Chung Hua Wai Ko Tsa Chih 31:264–266PubMedGoogle Scholar
  30. 30.
    Wu X, Ge R, Li PJ, et al (1997) The clinical application of three types of esophageal stent designed by ourselves. Chin J Radiol 31:172–175Google Scholar
  31. 31.
    Mao AW, Gao ZD, Yang RJ, et al (1998) Treatment of duodenal malignant stenosis using stent implantation combined with arterial chemotherapy. Chin J Radiol 32:655–657Google Scholar
  32. 32.
    Li TX, Han XW, Ma WZ, et al (1998) Treatment of benign and malignant gastroduodenal obstruction with self-expanding metal stents. Chin J Radiol 32:658–660Google Scholar
  33. 33.
    Dai DK, Zhai RY, Yu P (1998) Follow up study of esophageal stent placement. Chin J Radiol 32:391–394Google Scholar
  34. 34.
    Wu X, Ge R, Li PJ, et al (1999) Clinical application of the esophageal anti-reflux stent. Chin J Radiol 33:185–187Google Scholar
  35. 35.
    Liu Y, Sun YE, Huang XM, et al (1993) Nitinol alloy endotracheal stent used in treatment of tracheal stenosis, experimental and clinical application. Chung Hua Wai Ko Tsa Chih 31:267–268PubMedGoogle Scholar
  36. 36.
    Wei GZ, Yin XW, Zhong XD, et al (1995) Clinical application of NiTi stent for treatment of tracheal strictures. Jiangsu Med J 21:13–14Google Scholar
  37. 37.
    Feng QX, Li QL, Tan GF, et al (1997) Endoscopic placement of NiTi stent for treatment of tracheal strictures. Chung Hua Chieh Ho Ho Hu Hsi Tsa Chih 20:242–243Google Scholar
  38. 38.
    Gu WQ, Liu YX, Wang YS, et al (1994) Researches on NiTi shape memory alloy biliary stent. Chin J Exp Surg 11:283–284Google Scholar
  39. 39.
    Gu WQ (1993) Shape memory nitinol alloy endoprosthesis for malignant biliary strictures. Chung Hua Wai Ko Tsa Chih 31:260–263PubMedGoogle Scholar
  40. 40.
    Jiang WJ, Yao F, Ren A, et al (1997) Percutaneous placement of endoprostheses for treatment of malignant biliary obstruction: a report of 51 cases. Chin J Radiol 31:729–733Google Scholar
  41. 41.
    Chinese Society of Cardiology (1998) A data analysis of the first national coronary intervention registry. Chin J Cardiovasc Dis 26:25–28Google Scholar
  42. 42.
    Tong J, Su HX, Li GS, et al (1992) A preliminary study of Ti-Ni shape memory alloy intravascular stent. Chin J Thorac Cardiovasc Surg 8:54–55Google Scholar
  43. 43.
    Ma GS, Huang J, Wang JL, et al (1995) Tissue-compatibility of intravascular endoprosthetic stent of nitinol alloy. Chin J Biomed Eng 14:198–201Google Scholar
  44. 44.
    Wang MQ, Zhang JS, Yu M, et al (1994) Nitinol self-expanding stents in TIPSS procedure: animal experimental study and preliminary clinical experience. In: Chu YY, Tu HL (eds) Proceedings of the International Symposium on Shape Memory Materials, Beijing, China. International Academic Publishers, Beijing pp 631–634Google Scholar
  45. 45.
    Jiang WJ, Ren A, Zhang XZ (1997) Experimental study on transluminal implantation of mesh stent for the treatment of pseudoaneurysm of abdominal aorta. Chin J Radiol 31:331–333Google Scholar
  46. 46.
    Jiang WJ, Ren A, Liu P, et al (1995) Application of self-expandable nitinol mesh stent in the treatment of aortic aneurysm. Chin J Radiol 29:444–447Google Scholar
  47. 47.
    Zhang JS, Wang MQ (1997) Some problems in the applications of endostents in China. Chin J Radiol 31:295–297Google Scholar
  48. 48.
    Wain RA, Marin ML, Ohki T, Sanchez LA, Lyon RT, Rozenblit A, Suggs WD, Yuan JG, Veith FJ (1998) Endoleaks after endovascular graft treatment of aortic aneurysms: classification, risk factors and outcome. J Vase Surg 27:69–80CrossRefGoogle Scholar
  49. 49.
    Hagen B, Harnoss BM, Trabhardt S, Ladeburg M, Fuhrmann H, Franck C (1993) Self-expandable macroporous nitinol stents for transfemoral exclusion of aortic aneurysms in dogs: preliminary results. Cardiovasc Intervent Radiol 16:339–342PubMedCrossRefGoogle Scholar
  50. 50.
    Ruiz CE, Zhang HP, Butt AI, Whittaker P (1997) Percutaneous treatment of abdominal aortic aneurysm in s swine model. Circulation 96:2438–2448PubMedGoogle Scholar
  51. 51.
    Longas JL, Puertolas JA, Rios R, et al (1997)Design characteristics and mechanical properties of a new NiTi stent. In: Pelton AR, Hodgson D, Russell SM, Duerig TW (eds) Proceedings of SMST 1997. Shape Memory and Superelastic Technologies, Pacific Grove, pp 567–572Google Scholar
  52. 52.
    Agrawal CM, Clark HG (1992) Deformation characteristics of a bioabsorbable intravascular stent. Invest Radiol 27:1020–1024PubMedCrossRefGoogle Scholar
  53. 53.
    Trigwell S, Selvaduray G (1997) Effects of surface finish on the corrosion of NiTi alloy for biomedical applications. In: Pelton AR, Hodgson D, Russell SM, Duerig TW (eds) Proceedings of SMST 1997. Shape Memory and Superelastic Technologies, Pacific Grove, pp 383–388Google Scholar
  54. 54.
    Su YY, Raman V (1997) The quest for nitinol wire surface quality for medical applications. In: Pelton AR, Hodgson D, Russell SM, Duerig TW (eds) Proceedings of SMST 1997. Shape Memory and Superelastic Technologies, Pacific Grove, pp 389–394Google Scholar
  55. 55.
    Pan J, Leygraf C, Thierry D, Ektessabi AM (1997) Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering. J Biomed Mater Res 35:309–318PubMedCrossRefGoogle Scholar
  56. 56.
    Aronsson BO, Lausmaa J, Kasemo B (1997) Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. J Biomed Mater Res 35:49–73PubMedCrossRefGoogle Scholar
  57. 57.
    Leitao E, Silva RA, Barbosa SA (1997) Electrochemical and surface modifications on N+-ion-implanted 316L stainless steel. J Mater Sci Mater Med 8:363–368Google Scholar
  58. 58.
    Wennerberg A, Hallgren C, Johansson C, et al (1997) Surface characterization and biological evaluation of spark-eroded surfaces. J Mater Sci Mater Med 8:757–763PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Mi Xujun
  • Zhu Ming
  • Guo Jinfang
  • Yuan Guansen

There are no affiliations available

Personalised recommendations