Skip to main content

Progressive Damage Assessment of TiNi Endodontic Files

  • Chapter
Shape Memory Implants
  • 559 Accesses

Abstract

The occlusal surface of the tooth is formed with a coronal body made of hard enamel structure under which the dentine structure is found. Beneath the dentine structure there is a pulp chamber that extends to a root canal toward the root apex. Caries cause dental decay by attacking the enamel surface. Dental caries continue their attack until the decay progresses to the root chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ford TRP (1997) Introduction, history and scope. In: Ford TRP (ed) Endodontics in clinical practice, 4th edn, Wright, Oxford, pp 1–7

    Google Scholar 

  2. Walton R, Torbinejad M (1989) Principles and practice of endodontics. Saunders, Philadelphia, p 196

    Google Scholar 

  3. Vertucci FJ (1984) Root anatomy of the human permanent teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 58:589–599

    CAS  Google Scholar 

  4. Esposito P, Cunningham W (1995) A comparison of canal preparation with nickel-titanium and stainless steel instruments. J Endod 21:173–176

    Article  PubMed  CAS  Google Scholar 

  5. Stirndberg L (1956) The dependency of the results of pulp therapy on certain factors. Acta Odont Scand 14:21

    Google Scholar 

  6. Stringer L (1956) The dependence of the results of pulp therapy on certain factors. Acta Odont Scand 14:175–176

    Google Scholar 

  7. Adenubi J, Rule D (1976) Success rate for root fillings in young patients. Br Dent J 141:327–329

    Article  Google Scholar 

  8. Nicholls N (1967) Endodontics. Wright, London, p 227

    Google Scholar 

  9. Sommer R, Ostrander F, Crowley M (1966) Clinical endodontics, 3rd edn, p 227

    Google Scholar 

  10. Siskin M (1967) Surgical techniques applicable to endodontics. Dent Clin North Am 1967:747–749

    Google Scholar 

  11. Stringer L (1956) Dependence of the results of pulp therapy on certain factors. Acta Odontol Scand 14:1

    Article  Google Scholar 

  12. Grossman L (1969) Guidelines for the prevention of fracture of root canal instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 28:746–752

    CAS  Google Scholar 

  13. Sotokawa T (1988) An analysis of clinical breakage of root canal instruments. J Endod 14:75–82

    Article  PubMed  CAS  Google Scholar 

  14. Zuolo M, Waloton R, Murgel C (1992) Canal mater files: scanning electron microscopic evaluation of new instruments and their wear with clinical usage. J Endod 18:336–339

    Article  PubMed  CAS  Google Scholar 

  15. Lilley J, Smith D (1966) An investigation of the fracture of root canal reamers. Br Dent J 19:364–372

    Google Scholar 

  16. Lautenschlager E, Jacobs J, Marshall G, Heuer M (1977) Brittle and ductile torsional failures of endodontic instruments. J Endod 3:175–178

    Article  PubMed  CAS  Google Scholar 

  17. Craig R, Mcliwain E, Peyton F (1968) Bending and tension properties of endodontic instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 25:239–254

    CAS  Google Scholar 

  18. Dolan D, Craig R (1982) Bending and torsion of endodontic files with rhombus cross-sections. J Endod 8:260–264

    Article  PubMed  CAS  Google Scholar 

  19. Luebke N, Brantley W (1990) Physical dimensions and torsional properties of rotary endodontic instruments. Part 1. Gates Glidden drills. J Endod 16:438–441

    Article  PubMed  CAS  Google Scholar 

  20. Lausten L, Luebke N, Brantley W (1993) Bending and metallurgical properties of rotary endodntic instruments. Part 4. Gates Glidden and Peeso drills. J Endod 19:440–447

    Article  PubMed  CAS  Google Scholar 

  21. Brantley W, Luebke N, Luebke F, Mittchell J (1994) Performance of engine-driven rotary endodntic instruments with a superimposed bending deflection Part 5 Gates Glidden and Peeso drills. J Endod 20:241–245

    Article  PubMed  CAS  Google Scholar 

  22. Dieter G (1986) Mechanical metallurgy, 3rd edn. McGraw-Hill, New York, pp 262–345

    Google Scholar 

  23. Wolcott J, Himel V (1997) Torsional properties of nickel-titanium versus stainless steel endodontic files. J Endod 23:217–220

    Article  PubMed  CAS  Google Scholar 

  24. Campus J, Pertot W (1995) Machining efficiency of Ni-Ti K-type files in a linear motion. Int Endod J 28:239–243

    Article  Google Scholar 

  25. Scott G, Walton R (1986) Ultrasonic endodontics: the wear of instruments with usage. J Endod 12:279–283

    Article  PubMed  CAS  Google Scholar 

  26. Chernick L, Jacobs J, Lautenschlager E, Heuer M (1976) Torsional failure of endodontic files. J Endod 2:94–97

    Article  PubMed  CAS  Google Scholar 

  27. Brick R, Pense A, Gordon R (1977) Structure and properties of engineering materials, 4th edn. McGraw-Hill, New York, pp 337–339

    Google Scholar 

  28. Haikel Y, Gasser P, Allemann C (1991) Dynamic fracture of hybrid endodontic hand instruments compared with traditional files. J Endod 17:217–220

    Article  PubMed  CAS  Google Scholar 

  29. Dederich D, Zakariasen K (1986) The effects of cyclic axial motion on rotary endodntic instrument fatigue. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 61:192–196

    CAS  Google Scholar 

  30. Walia H, Brantley W, Gerstein H (1988) An initial investigation of the bending and torsional properties of Nitinol root canal files. J Endod 14:346–351

    Article  PubMed  CAS  Google Scholar 

  31. Serene T, Adams J, Saxena A (1995) Nickel-titanium instruments: Applications in endodontics, 1st edn. Ishiyaku Euro America, St. Louis, p 16

    Google Scholar 

  32. Pruett JP, Clement DJ, Carnes DL (1997) Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod 23:77–85

    Article  PubMed  CAS  Google Scholar 

  33. Mitchell BF, James GA, Nelson RC (1983) The effect of autoclave sterilization on endodontic fils. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 55:204–207

    CAS  Google Scholar 

  34. Kiss EP, Murchison DF, Davis RD (1997) Effect of sterilization on torsional fracture resistance of nickel-titanium rotary files. J Dent Res 76:82

    Google Scholar 

  35. Melton KN, Mercier O (1979) Fatigue of NiTi thermoelastic martensites. Acta Metallica 27:137–144

    Article  CAS  Google Scholar 

  36. Pluvinage GC, Raquet MN (1983) Physical and mechanical measurements of damage in low-cycle fatigue: application for two-level tests. ASTM STP811 21st journees des Aciers speciaux. Colloque Intern sur les aciers inoxydables, 1982 S’Etienne Soc Française de Metallurgie Paris, pp 139-150

    Google Scholar 

  37. Oshida Y, Daly J (1990) Fatigue damage evaluation of shot-peened high strength aluminum alloy. In: Meguid SA (ed) Surface engineering. Elsevier Applied Science, London, pp 404–416

    Google Scholar 

  38. Oshida Y, Chen PC (1990) Non-destructive low-cycle fatigue characterization of multi-layer thin film structures. J Non-Destructive Eval 8:235–245

    Google Scholar 

  39. Oshida Y, Chen PC (1991) High and low-cycle fatigue damage evaluation of multi-layer thin film structure. Trans Am Soc Mechanical Eng J Electro Packaging 113:58–62

    Google Scholar 

  40. Schneider SW (1971) A comparison of canal preparation in straight and curved canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 32:271–275

    CAS  Google Scholar 

  41. Lausmaa J, Kasemo B, Hanson S (1985) Accelerated oxide growth on titanium implants during autoclaving caused by fluorine contamination. Biomaterials 6:23–27

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oshida, Y., Farzin-Nia, F. (2000). Progressive Damage Assessment of TiNi Endodontic Files. In: Yahia, L. (eds) Shape Memory Implants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59768-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59768-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64118-3

  • Online ISBN: 978-3-642-59768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics