Skip to main content

Monte Carlo studies of energy modulated radiotherapy

  • Conference paper
The Use of Computers in Radiation Therapy

Abstract

Our overall goal is to improve the management of head, neck, and breast cancer. Achieving local control is important as a considerable proportion of patients who die, do so with uncontrolled local disease [1]. Moreover, failure to eradicate local disease may serve as a nidus for distant dissemination [2], with local control linked to a reduction in the incidence of distant metastases for a variety of cancers [3–6]. Energy modulated radiotherapy (EMRT) will provide us with the ability to vary energy and intensity over the target and this may lead to improved target coverage with less normal tissue irradiated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brady LW, Markos AM, Mically B, Fischer SA, Lann F, 1990, Innovative Techniques in Radiation Oncology, Cancer 65:610–624

    Article  PubMed  CAS  Google Scholar 

  2. Leibel SA, Ling CC, Kutcher GJ, Mohan R, Cordon-Cordo C, Fuks Z, 1991 The biological basis for conformal three dimensional radiation therapy, Int J Radiat Oncol Biol Phys 21:805–811

    Article  PubMed  CAS  Google Scholar 

  3. Fuks Z, Leibel SA, Wallner KE, Begg CB, Fair WR, Anderson LL, Hilaris BS, Witmore WF, 1991, The effect of local control on metastatic dissemination in carcinoma of the prostate — long term results in patients treated with I–125 implantation, Int J Radiat Oncol Biol Phys 21:537–547

    Article  PubMed  CAS  Google Scholar 

  4. Leibel SA, Scott CB, Mohinddin M, Marcial VA, Coia LR, Davis LW, Fuks Z, 1991, The effect of local-regional control on distant metastatic dissemination in carcinoma of the head and neck — results of an analysis from the RTOG database, Int J Radiat Oncol Biol Phys 21:549–556

    Article  PubMed  CAS  Google Scholar 

  5. Arriagada R, Rutquist LE, Mattsson A, Kramar A, Rotstein S, 1995, Adequate locoregional treatment for early breast cancer may prevent secondary dissemination, Journal Clinical Oncology 13:2869–2878

    CAS  Google Scholar 

  6. Anderson P, Dische S, 1980, Local control and the subsequent incidence of distant metastases, Int J Radiat Oncol Biol Phys 7:1645–1648

    Google Scholar 

  7. JL Humm, A Larsson, EP Lief, 1996, Dosimetric properties of a scanned beam microtron at low monitor unit settings: Importance for conformal therapy, Med Phys 23(3):329–335

    Article  PubMed  CAS  Google Scholar 

  8. EE Klein, Z Li, DA Low, 1996, Feasibility study of multileaf collimated electrons with a scattering foil based accelerator, Radioth and Onc 41(2): 189–196

    Article  CAS  Google Scholar 

  9. M G Karlsson, M Karlsson, C-M Ma, 1999, Treatment head design for multifleaf collimated high-energy electrons, Med Phys 26(10):2162–2167

    Article  Google Scholar 

  10. A Brahme, 1987, Design principles and clinical possibilities with a new generation of radiation therapy equipment Acta Oncologica 26:403

    Article  PubMed  CAS  Google Scholar 

  11. M Karlsson, H Svensson, H Nystrom, and J Stenberg, 1988, The 50 MeV race-track accelerator — a new approach to beam shaping and modulation, Proc of Dosim in Radioth 2:307–320

    Google Scholar 

  12. M Karlsson, H Nystrom and H Svensson, 1992, Electron beam characteristics of the 50 MeV racetrack microtron, Med Phys 19(2):307–315

    Article  PubMed  CAS  Google Scholar 

  13. JL Humm, A Larsson, EP Lief, 1996, Dosimetric properties of a scanned beam microtron at low monitor unit settings: Importance for conformal therapy, Med Phys 23(3):329–335

    Article  PubMed  CAS  Google Scholar 

  14. S Hyodynmaa, A Gustafsson, and A Brahme, 1996, Optimization of conformal electron beam using energy and fluence modulation, Med Phys 23(5):659

    Article  PubMed  CAS  Google Scholar 

  15. M Asell, S Hyodynmaa, A Gustafsson, and A Brahme, 1997, Optimization of 3D conformal electron beam therapy in inhomogeneous media by concomitant fluence and energy modulation, Phys Med Biol 42(11):2083

    Article  PubMed  CAS  Google Scholar 

  16. MA Ebert and PW Hoban, 1997, Possibilities for tailoring dose distributions through the manipulation of electron beam characteristics, Phys Med Biol 42(11):2065–2081

    Article  PubMed  CAS  Google Scholar 

  17. M G Karlsson, M Karlsson, and B Zackrisson, 1998, Intensity modulation with electrons: calculations, measurements and clinical applications, Phys Med Biol 43:1159–1169

    Article  PubMed  CAS  Google Scholar 

  18. A Samuelson, S Hyodynmaa, and KA Johansson, 1998, Dose accuracy check of the 3D electron beam algorithm in a treatment planning system, Phys Med Biol 43:129–1544

    Article  Google Scholar 

  19. KR Shortt, CK Ross, AF Bielajew, DWO Rogers, 1986, Electron beam dose distributions near standard inhomogeneities, Phys Med Biol 1, 235

    Article  Google Scholar 

  20. H Neuenschwander and EJ Born, 1992, A macro Monte Carlo method for electron beam dose calculation, Phys Med Biol 37, 107

    Article  Google Scholar 

  21. DWO Rogers, BA Faddegon, GX Ding, CM Ma, J We, TR Mackie, 1995, BEAM: A Monte Carlo code to simulate radiotherapy treatment units, Med Phys 22, 503

    Article  PubMed  CAS  Google Scholar 

  22. BB Sorcini, S Hyodynmaa, and A Brahme, 1995, The role of phantom and treatment head generated bremsstrahlung in high-energy electron beam dosimetry, Phys Med Biol 40, 1135

    Article  PubMed  CAS  Google Scholar 

  23. M Fippel, I Kawrakow, and K Friedrich, 1997, Electron beam dose calculations with the VMC algorithm and the verification data of the NCI working group, Phys Med Biol 42, 501

    Article  PubMed  CAS  Google Scholar 

  24. BA Faddegon, 1998, MCRTP: A new EGS4 user code for Monte Carlo electron treatment planning, Med Phys 25(6): 1073 (abstract)

    Google Scholar 

  25. BA Faddegon, J Balogh, R Mackenzie, and D Scora, 1998, Clinical considerations of Monte Carlo for electron radiotherapy treatment planning, Rad Phys and Chem 53, 217

    Article  CAS  Google Scholar 

  26. SP Teng, DW Anderson, and DG Lindstrom, 1986, Monte Carlo electron-transport calculations for clinical beams using energy grouping, Appl Radiat Isot 37(12): 1189–1194

    Article  CAS  Google Scholar 

  27. AA AI Beteri, DE Raeside, 1992, Optimal electron beam treatment planning for retinoblastoma using a new three-dimensional Monte Carlo-based treatment planning system, Med Phys 19: 125

    Article  Google Scholar 

  28. H Neuenschwander, TR Mackie, PJ Reckwerdt, 1995, MMC — a high-performance Monte Carlo code for electron beam treatment planning, Phys Med Biol 40: 543

    Article  PubMed  CAS  Google Scholar 

  29. PJ Keall and PW Hoban, 1996, Super-Monte Carlo: A 3-D electron beam dose calculation algorithm, Med Phys 23: 2023

    Article  PubMed  CAS  Google Scholar 

  30. I Kawrakow, M Fippel, K Friedrich, 1997, Improved modeling of multiple scattering in the VMC model, Med Phys 24: 505

    Article  PubMed  CAS  Google Scholar 

  31. CL Hartmann Siantar et al, 1997, Validation and clinical implementation of the Peregrine Monte Carlo dose calculation system for photon beam therapy, Medical and Biological Engineering and Comput 35, supplement part 2: 1102 (abstract)

    Google Scholar 

  32. JJ DeMarco, TD Solberg, and JB Smathers, 1998, A CT-based Monte Carlo simulation tool for dosimetry planning and analysis, Med Phys 25(1), 1

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faddegon, B., Balogh, J., Mackenzie, B., Ung, Y., Ruschin, M. (2000). Monte Carlo studies of energy modulated radiotherapy. In: Schlegel, W., Bortfeld, T. (eds) The Use of Computers in Radiation Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59758-9_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59758-9_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67176-3

  • Online ISBN: 978-3-642-59758-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics