Interventional strategies to counter the effects of inter-fraction treatment variation

  • John W. Wong
  • Di Yan
  • David A. Jaffray
  • Greg Edmundson
  • Alvaro A. Martinez
Conference paper


Great strides have been made in recent years in the development of important techniques for treatment planning and delivery. There is optimism that the new conformal treatment methods, such as intensity modulation (IMRT) will ultimately lead to improved local control and/or reduced toxicity. However, our expectations must be guarded. The higher degree of conformation means that the risk of treatment failure will also be higher. It is imperative to ensure that the treatments are not only optimally planned, but also accurately implemented. Failure to minimize treatment error will not only undermine the treatment outcome, but also lead to the erroneous and dire conclusion that the advanced treatment methods are ineffectively.


Planning Target Volume Clinical Target Volume High Dose Rate Setup Error Portal Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ICRU (1993). Report No. 50: Prescribing, Recording and Reporting Photon Beam Therapy. Washington, D.C.: International Commission of Radiation Units and Measurements.Google Scholar
  2. 2.
    Mageras GS, Kutcher GJ, Leibel SA, Zelefsky MJ, Melian E, Mohan R, Fuks Z (1996). A method of incorporating organ motion uncertainties into Three-Dimensional conformal treatment plans. Int J Rad Oncol Biol Phys, 35:333–342,.CrossRefGoogle Scholar
  3. 3.
    Rabinowitz I., Broomberg J., Goitein M., McCarthy K., Leong J. (1985). Accuracy of radiation field alignment in clinical practice. Int J Radiat Oncol Biol Phys, 11: 1857–1867.PubMedCrossRefGoogle Scholar
  4. 4.
    Huizenga H., Levndag P.C., De Porre P.M.Z.R., Visser A.G. (1988). Accuracy in radiation field alignment in head and neck cancer: a prospective study. Radio Oncol, 11: 181–187.CrossRefGoogle Scholar
  5. 5.
    Bel A., Vos P.H., Rodrigus P.T.R., Creutzberg C.L., Visser A.G., Stroom J.C., Lebesque J.V. (1996). High precision prostate cancer irradiation by a clinical application of an offline patient setup verification procedure using portal imaging. Int J Radiat Oncol Biol Phys, 35: 321–332.PubMedCrossRefGoogle Scholar
  6. 6.
    Lebesque J.V., Remeijer P., Van Riel V., et al. (1998). Clinical evaluation of setup verification and correction protocols: results of multicentre studies of the Dutch Cooperative EPID Group, Proceedings of the 5th International Workshop on Electronic Portal Imaging. Pheonix, Arizona.Google Scholar
  7. 7.
    Yan D., Wong J.W., Gustafson G.S., Martinez A. A (1995). A new model for “accept or reject” strategies in off-line and online megavoltage treatment evaluation. Int J Radiat Oncol Biol Phys, 31: 943–952.PubMedCrossRefGoogle Scholar
  8. 8.
    Yan D., Vicini F., Wong J., Martinez A. (1997). Adaptive radiation therapy. Phys Med Biol, 42: 123–132.PubMedCrossRefGoogle Scholar
  9. 9.
    Yan D., Wong J., Vicini F., Michalski J., Pan C., Frazier A., Martinez A. (1997). Adaptive modification of treatment planning to minimize the deleterious effect of treatment setup error. Int J Radiat Oncol Biol Phys, 38: 197–206.PubMedCrossRefGoogle Scholar
  10. 10.
    Yan D., Ziaja E., Jaffray D., Wong J., Brabbins D., Vicini F., Martinez A. (1998). The use of adaptive radiation therapy to reduce setup error: a prospective clinical study. Int J Radiat Oncol Biol Phys, 41: 715–720.PubMedCrossRefGoogle Scholar
  11. 11.
    Yan D., Lockman D., Brabbins D. (1998). A prediction model for defining a proactive planning target volume in external beam treatment of prostate cancer. Int J Radiat Oncol Biol Phys, 42:216 (Abstract).Google Scholar
  12. 12.
    Blasko J., Radge H., Schumacher D. (1987). Transperineal percutaneous iodine-125 implantation for prostate carcinoma using transrectal ultrasound and template guidance. Endocuriether Hyperther Oncol, 3: 131–139.Google Scholar
  13. 13.
    Edmundson G.K., Rizzo N.R., Teahan M., Brabbins D., Vicini F., Martinez A.A. (1993). Concurrent treatment planning for outpatient high dose rate prostate template implants. Int J Radiat Oncol Biol Phys, 27: 1215–1223.PubMedCrossRefGoogle Scholar
  14. 14.
    Edmundson G.K., Yan D., Martinez A.A. (1995). Intraoperative optimization of needle placement and dwell times for conformal prostate brachytherapy. Int J Radiat Oncol Biol Phys, 33: 1257–1263.PubMedCrossRefGoogle Scholar
  15. 15.
    Martinez A., Gonzalez J., Stromberg J., Edmundson G., Plunkett M., Gustafson G., Brown D., Vicini F., Brabbins D. (1995). Conformal prostate brachytherapy: Initial experience of a Phase I/II dose escalating trial. Int J Radiat Oncol Biol Phys, 33: 1019–1027.PubMedCrossRefGoogle Scholar
  16. 16.
    Stromberg J., Martinez A., Gonzalez J., Edmundson G., Ohanian N., Vicini F., Hollander J., Gustafson G., Spencer W., Yan D., Brabbins D. (1995). Ultrasound guided high dose rate conformal brachytherapy boost in prostate cancer: Treatment description and preliminary results of a dose escalating clinical trial. Int J Radiat Oncol Biol Phys, 33: 161–171.PubMedCrossRefGoogle Scholar
  17. 17.
    Zamboglou N., Kolotas C., Baltas D., Martin T., Rogge B., Strassman G., Tsalpatouros A., Vogt H.G. (1999). Clinical evaluation of CT based software in treatment planning for interstitial HDR brachytherapy. In Speiser B.L., Mould R.F., eds., Brachytherapy for the 21st Century, Nucletron B.V., The Netherlands, pp 312–326.Google Scholar
  18. 18.
    D’Amico A.V., Cormack R., Tempany C.M., Kumar S., Topulos G., Kooy H.M., Coleman C.N. (1998). Real-time magnetic resonance image-guided intersitial brachytherapy in the treatment of selected patients with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys, 42: 507–515.PubMedCrossRefGoogle Scholar
  19. 19.
    Johnson LS, Milliken BD, Hadley SW, Pelizzari CA, Haraf DJ, Chen GT (1999). Initial clinical experience with a video-based patient positioning system. Int J Radiat Oncol Biol Phys 45:205–213PubMedGoogle Scholar
  20. 20.
    Ezz A., Porter A., Munro P., Battista J., Jaffray D., Fenster A., Osborne S. (1991). Daily monitoring and correction of radiation field placement errors using a video-based portal imaging system: A pilot study. Int J Radiat Oncol Biol Phys, 22: 159–165.CrossRefGoogle Scholar
  21. 21.
    De Neve W., Van den Heuvel F., De Beukeleer M., Coghe M., Thon L., De Roover P., Van Lancker M., Storme G. (1992) Routine clinical on-line portal imaging followed by immediate field adjustment using a tele-controlled patient couch. Radio Oncol, 24: 45–54.CrossRefGoogle Scholar
  22. 22.
    Murphy M.J. (1997). An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxic radiosurgery. Med Phys, 24: 857–886.PubMedCrossRefGoogle Scholar
  23. 23.
    Van de Steene J., Van den Heuvel F., Bel A., (1998). Electronic portal imaging with on-line correction of setup error in thoracic irradiation: clinical evaluation. Int J Radiat Oncol Biol Phys, 40: 967–976.PubMedCrossRefGoogle Scholar
  24. 24.
    Pisani L.J., Lockman D., Jaffray D., Yan D., Martinez A., Wong J. (1999) Factor limiting the accuracy of on-line setup correction using electronic localization radiographs. Int J Radiat Oncol Biol Phys, submitted for publication.Google Scholar
  25. 25.
    Balter J.M., McShan D.L., Lam K., et al. (1997). Incorporation of patient setup measurement and adjustment within a computer controlled radiotherapy system. Proceedings of the 12th International Conference on the Use of Computers in Radiation Therapy. Eds. Leavitt D. and Starkschall G.: pp 182–184.Google Scholar
  26. 26.
    Lattanzi J., McNeeley S., Pinover W., (1998) A comparison of daily CT localization to a daily ultrasound-based system in prostate cancer. Int J Radiat Oncol Biol Phys, 43:719–725.Google Scholar
  27. 27.
    Blomgren H., Lax I., Naslund I., (1995). Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Acta Oncol, 34: 861–870.PubMedCrossRefGoogle Scholar
  28. 28.
    Uematsu M., Fukui T., Shioda A., (1996). A dual computed tomography linear accelerator unit for stereotactic radiation therapy: a new approach without cranially fixated stereotactic frames. Int J Radiât Oncol Biol Phys, 35: 587–592.PubMedCrossRefGoogle Scholar
  29. 29.
    Mackie T.R., Holmes T., Swerdloff S., Reckwerdt P., Deasy J.O., Yang J., Paliwal B., Kinsella T. (1993). Tomotherapy: a new concept for the delivery of dynamic conformal therapy. Med Phys, 20: 1709–1719.PubMedCrossRefGoogle Scholar
  30. 30.
    Jaffray D.A., Drake D.G., Moreau M., (1999). Radiographic and tomographic localization of bone and soft-tissue targets on a clinical accelerator. Int J Radiat Oncol Biol Phys, 45:773–789.PubMedCrossRefGoogle Scholar
  31. 31.
    Feldkamp L.A., Davis L.C., Kress J.W. (1984). Practical cone-beam algorithm. J Opt Soc Am. A1: 612–619.CrossRefGoogle Scholar
  32. 32.
    Jaffray D.A., Drake D.G., Pisani L., (1999). Conebeam tomographic guidance of radiation field placement in radiation therapy of the prostate. Int J Radiat Oncol Biol Phys, accepted for publication.Google Scholar
  33. 33.
    Jaffray D.A., Siewerdsen J. H., Drake D. G. (1999). Performance of a volumetric CT scanner based upon a flat-panel imager. SPIE Physics of Medical Imaging Vol. 3659, in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • John W. Wong
    • 1
  • Di Yan
    • 1
  • David A. Jaffray
    • 1
  • Greg Edmundson
    • 1
  • Alvaro A. Martinez
    • 1
  1. 1.Department of Radiation OncologyWilliam Beaumont HospitalRoyal OakUSA

Personalised recommendations