BANG™ polymer gels applied to the verification of conformal heavy ion radiotherapy

  • Ulla Ramm
  • Michael Bock
  • Ulrich Weber
  • Michael Krämer
  • Achim Bankamp
  • Marc Damrau
  • Heinz-Dietrich Böttcher
  • Lothar R. Schad
  • Gerhard Kraft
Conference paper

Abstract

Magnetic Resonance Imaging (MRI) can be used to measure the dose distribution produced by sparsely ionizing radiation absorbed in tissue-equivalent BANG™ polymer gels [1, 2]. In contrast to conventional dosimetry techniques using ionization chambers or thermoluminescence detectors (TLD) MR imaging of BANG™ gels allows the verification of complete three-dimensional dose distributions with one single measurement. It is not obvious, that this technique can immediately be extended to densely ionizing radiation like the 12C6+ beam used in the radiotherapy project started at the Gesellschaft für Schwerionenforschung mbH (GSI), Darmstadt, Germany. For such high-LET radiation saturation effects can be expected, just like for any other condensed phase detector. Another difficulty arises from the fact that a 12C beam in matter undergoes fragmentation and generates a mixed radiation field of various particles with different energies. Contributions of different particles with a spectrum of energies generate the signal in the detector and this is not necessarily identical to the physical dose .

Keywords

Verse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gore J C, Kang Y S, and Schulz R J 1984 Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging Phys. Med. Biol. 29 1189–1197PubMedCrossRefGoogle Scholar
  2. [2]
    Maryanski M J et al. 1993 NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: A new approach to 3D dosimetry by MRI Magn. Res. Imag. 11 253–258CrossRefGoogle Scholar
  3. [3]
    Haberer T et al. 1993 Magnetic scanning system for heavy ion therapy Nucl. Instr. and Meth. in Phys. Res. A 330 296–305CrossRefGoogle Scholar
  4. [4]
    Jäckel O and Krämer M 1998 Treatment planning for heavy ion irradiation Physica Medica 14 Suppl. 1 53–62Google Scholar
  5. [5]
    Geiß O et al. 1998 Efficiency of thermoluminescent detectors to heavy charged particles Nucl. Instr. and Meth. in Phys. Res. B 142 592–598CrossRefGoogle Scholar
  6. [6]
    Scholz M and Kraft G 1994 Calculation of heavy ion inactivation probabilities based on track structure, X ray sensitivity and target size Radiat. Prot. Dosim. 52 29–33Google Scholar
  7. [7]
    Krämer M 1995 Calculations of heavy-ion track structure Nucl. Instr. and Meth. in Phys. Res. B 105 14–20CrossRefGoogle Scholar
  8. [8]
    Schwab T 1991 Transport von Schwerionen durch Materie innerhalb ionenoptischer Systeme GSI-Report 9110 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Ulla Ramm
    • 1
  • Michael Bock
    • 2
  • Ulrich Weber
    • 3
  • Michael Krämer
    • 3
  • Achim Bankamp
    • 2
  • Marc Damrau
    • 1
  • Heinz-Dietrich Böttcher
    • 1
  • Lothar R. Schad
    • 2
  • Gerhard Kraft
    • 3
  1. 1.Universitätsklinikum, StrahlentherapieFrankfurt/MainGermany
  2. 2.Deutsches KrebsforschungszentrumHeidelbergGermany
  3. 3.Gesellschaft für SchwerionenforschungDarmstadtGermany

Personalised recommendations