Advertisement

BANG™ polymer gels applied to the verification of conformal heavy ion radiotherapy

  • Ulla Ramm
  • Michael Bock
  • Ulrich Weber
  • Michael Krämer
  • Achim Bankamp
  • Marc Damrau
  • Heinz-Dietrich Böttcher
  • Lothar R. Schad
  • Gerhard Kraft
Conference paper

Abstract

Magnetic Resonance Imaging (MRI) can be used to measure the dose distribution produced by sparsely ionizing radiation absorbed in tissue-equivalent BANG™ polymer gels [1, 2]. In contrast to conventional dosimetry techniques using ionization chambers or thermoluminescence detectors (TLD) MR imaging of BANG™ gels allows the verification of complete three-dimensional dose distributions with one single measurement. It is not obvious, that this technique can immediately be extended to densely ionizing radiation like the 12C6+ beam used in the radiotherapy project started at the Gesellschaft für Schwerionenforschung mbH (GSI), Darmstadt, Germany. For such high-LET radiation saturation effects can be expected, just like for any other condensed phase detector. Another difficulty arises from the fact that a 12C beam in matter undergoes fragmentation and generates a mixed radiation field of various particles with different energies. Contributions of different particles with a spectrum of energies generate the signal in the detector and this is not necessarily identical to the physical dose .

Keywords

Dose Distribution Linear Energy Transfer Projectile Energy Transversal Relaxation Rate Radial Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gore J C, Kang Y S, and Schulz R J 1984 Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging Phys. Med. Biol. 29 1189–1197PubMedCrossRefGoogle Scholar
  2. [2]
    Maryanski M J et al. 1993 NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: A new approach to 3D dosimetry by MRI Magn. Res. Imag. 11 253–258CrossRefGoogle Scholar
  3. [3]
    Haberer T et al. 1993 Magnetic scanning system for heavy ion therapy Nucl. Instr. and Meth. in Phys. Res. A 330 296–305CrossRefGoogle Scholar
  4. [4]
    Jäckel O and Krämer M 1998 Treatment planning for heavy ion irradiation Physica Medica 14 Suppl. 1 53–62Google Scholar
  5. [5]
    Geiß O et al. 1998 Efficiency of thermoluminescent detectors to heavy charged particles Nucl. Instr. and Meth. in Phys. Res. B 142 592–598CrossRefGoogle Scholar
  6. [6]
    Scholz M and Kraft G 1994 Calculation of heavy ion inactivation probabilities based on track structure, X ray sensitivity and target size Radiat. Prot. Dosim. 52 29–33Google Scholar
  7. [7]
    Krämer M 1995 Calculations of heavy-ion track structure Nucl. Instr. and Meth. in Phys. Res. B 105 14–20CrossRefGoogle Scholar
  8. [8]
    Schwab T 1991 Transport von Schwerionen durch Materie innerhalb ionenoptischer Systeme GSI-Report 9110 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Ulla Ramm
    • 1
  • Michael Bock
    • 2
  • Ulrich Weber
    • 3
  • Michael Krämer
    • 3
  • Achim Bankamp
    • 2
  • Marc Damrau
    • 1
  • Heinz-Dietrich Böttcher
    • 1
  • Lothar R. Schad
    • 2
  • Gerhard Kraft
    • 3
  1. 1.Universitätsklinikum, StrahlentherapieFrankfurt/MainGermany
  2. 2.Deutsches KrebsforschungszentrumHeidelbergGermany
  3. 3.Gesellschaft für SchwerionenforschungDarmstadtGermany

Personalised recommendations