Skip to main content

A New Approach to Define Landmarks for Point-Based Warping in Brain Imaging

  • Conference paper

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

An accurate comparison of inter-individual 3D image datasets of brains requires warping techniques to reduce geometric variations. In this study we use a point-based method of warping with weighted sums of displacement vectors, which is extended by an optimization process. To improve the practicability of 3D warping, we investigate fast automatic procedures for determining landmarks. The combined approach was tested on 3D autoradiographs of brains of Mongolian gerbils. The landmark-generator is based on Monte-Carlo-techniques to detect corresponding reference points at edges of anatomical structures. The warping function is distance-weighted with landmark-specific weighting factors. These weighting factors are optimized by a computational evolution strategy. Within this optimization process the quality of warping is quantified by the sum of spatial differences of manually predefined registration points (registration error). The described approach combines a highly suitable procedure to detect landmarks in brain images and a point-based warping technique, which optimizes local weighting factors. The optimization of the weighting factors improves the similarity between the warped and the target image.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Toga, A.W., Brain Warping. 1999, San Diego London: Academic Press.

    Google Scholar 

  2. Wolberg, G., Digital Image Warping. 1990, IEEE Computer Society Press.

    Google Scholar 

  3. Lohmann, K., et al. Spatial based polynomial 2D-warping: a possibility to reduce interindividual variations in functional neuroimaging? In: IEEE Int. Conf. Image Processing. 1996.

    Google Scholar 

  4. Hardy, R.L., Multiquadric equations of topography and other irregular surfaces. J. Geo- phys. Res., 1971, 76: p. 1905–1915.

    Article  Google Scholar 

  5. Bookstein, F.L., Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on pattern analysis and machine intelligence. 1989, 11(5): p. 567–585.

    Article  MATH  Google Scholar 

  6. Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In: 1968 ACM National Conference. 1968

    Google Scholar 

  7. Franke, R. and G. Nielson, Smooth interpolation of large sets of scattered data. Int. J. for Numerical Methods in Engineering, 1980, 15: p. 1691–1704.

    Article  MATH  MathSciNet  Google Scholar 

  8. Pielot, R., et al. Optimiertes Warping durch gewichtete Summen von Verschiebungsvektoren - eine neue Methode zur Reduktion von interindividuellen Variabilitäten von Hirndaten. In: Bildverarbeitung für die Medizin 1999, 1999, Heidelberg: Springer-Verlag.

    Google Scholar 

  9. Hess, A., et al., A new method for reliable and efficient reconstruction of 3-dimensional images from autoradiographies of brains sections. Journal of Neuroscience Methods. 1998, 84: p. 77–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pielot, R., Scholz, M., Obermayer, K., Gundelfinger, E.D., Hess, A. (2000). A New Approach to Define Landmarks for Point-Based Warping in Brain Imaging. In: Horsch, A., Lehmann, T. (eds) Bildverarbeitung für die Medizin 2000. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59757-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59757-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67123-7

  • Online ISBN: 978-3-642-59757-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics