Advertisement

An Exactly Solvable Two-Way Traffic Model with Ordered Sequential Update

  • M. E. Fouladvand
  • H.-W. Lee
Conference paper

Abstract

Within the formalism of the matrix product ansatz, we study a two-species asymmetric exclusion process with backward and forward site-ordered sequential updates. This model describes a two-way traffic flow with a dynamic impurity and shows a phase transition between the free flow and the traffic jam. We investigate characteristics of this jamming and examine similarities and differences between our results and those with the random sequential update [1].

Keywords

Average Velocity Translational Invariance Granular Flow Asymmetric Simple Exclusion Process Road Narrowness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-W. Lee, V. Popkov, and D. Kim, J. Phys. A. 30, 8497 (1997).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    V. Privman (Ed.), Non equilibrium Statistical Mechanics in One Dimension, (Cambridge University Press, Cambridge, 1997).Google Scholar
  3. 3.
    G.M. Schütz, to appear In: Phase transitions and critical phenomena, C. Domb and J. Lebowitz, (Eds.), (Academic Press, London, 1999).Google Scholar
  4. 4.
    M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito, Phys. Rev. E 51, 2939 (1995).CrossRefGoogle Scholar
  5. 5.
    D.E. Wolf, M. Schreckenberg, and A. Bachem (Eds.), Traffic and Granular Flow, (World Scientific, Singapore, 1996).Google Scholar
  6. 6.
    B. Derrida, S.A. Janowsky, J.L. Lebowitz, and E.R. Speers, J. Stat. Phys. 73, 813 (1993).MATHCrossRefGoogle Scholar
  7. 7.
    K. Mallick, J. Phys. A 29, 5375 (1996).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    M.R. Evans, Europhys. Lett. 36, 1493 (1996);CrossRefGoogle Scholar
  9. 8b.
    M.R. Evans J. Phys. A. 30, 5669 (1997).MathSciNetMATHCrossRefGoogle Scholar
  10. 9.
    S.A. Janowsky, J.L. Lebowitz, Phys. Rev. A 45, 618 (1992);CrossRefGoogle Scholar
  11. 9b.
    S.A. Janowsky, J.L. Lebowitz J. Stat. Phys. 77, 35 (1994).MathSciNetMATHCrossRefGoogle Scholar
  12. 10.
    G. Schütz, J. Stat. Phys. 71, 471 (1993).MATHCrossRefGoogle Scholar
  13. 11.
    H. Emmerich and E. Rank, Physica A 216, 435 (1995).CrossRefGoogle Scholar
  14. 12.
    S. Yukawa, M. Kikuchi, and S. Tadaki, J. Phys. Soc. Jpn. 63, 3609 (1994).CrossRefGoogle Scholar
  15. 13.
    N. Rajewsky, L. Santen, A. Schadschneider, and M. Schreckenberg, J. Stat. Phys. 92, 151 (1998).MathSciNetMATHGoogle Scholar
  16. 14.
    M.E. Fouladvand and H.-W. Lee, in press, Phys. Rev. E, (1999);[condmat/ 9906447].Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • M. E. Fouladvand
    • 1
    • 3
  • H.-W. Lee
    • 2
  1. 1.Department of PhysicsSharif University of TechnologyTehranIran
  2. 2.School of PhysicsKorea Institute for Advanced StudySeoulKorea
  3. 3.Institute for Studies in Theoretical Physics and MathematicsTehranIran

Personalised recommendations