Advertisement

Optimizing Traffic in Virtual and Real Space

  • D. Helbing
  • B. A. Huberman
  • S. M. Maurer

Abstract

We show how optimization methods from economics known as portfolio strategies can be used for minimizing down-load times in the Internet and travel times in freeway traffic. While for Internet traffic, there is an optimal restart frequency for requesting data, freeway traffic can be optimized by a small percentage of vehicles coming from on-ramps. Interestingly, the portfolio strategies can decrease the average waiting or travel times, respectively, as well as their standard deviation (“risk”). In general, portfolio strategies are applicable to systems, in which the distribution of the quantity to be optimized is broad.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.M. Lukose and B.A. Huberman, A methodology for managing risk in electronic transactions over the internet, in press, Netnomics, (2000).Google Scholar
  2. 2.
    B.A. Huberman, R.M. Lukose, and T. Hogg, An economics approach to hard computational problems, Science 275, 51 (1997).CrossRefGoogle Scholar
  3. 3.
    R. Hardin, Collective Action, (Johns Hopkins University Press, 1982).Google Scholar
  4. 4.
    B.S. Kerner and H. Rehborn, Experimental properties of phase transitions in traffic flow, Phys. Rev. Lett. 79, 4030 (1997)CrossRefGoogle Scholar
  5. 4b.
    B.S. Kerner and H. Rehborn, Experimental properties of complexity in traffic flow, Phys. Rev. E 53, R4275 (1996).CrossRefGoogle Scholar
  6. 5.
    H.Y. Lee, H.-W. Lee, and D. Kim, Origin of synchronized traffic flow on highways and its dynamic phase transition, Phys. Rev. Lett. 81, 1130 (1998).CrossRefGoogle Scholar
  7. 6.
    D. Helbing and M. Treiber, Gas-kinetic-based traffic model explaining observed hysteretic phase transition, Phys. Rev. Lett. 81, 3042 (1998);CrossRefGoogle Scholar
  8. 6b.
    D. Helbing and M. TreiberJams, waves, and clusters, Science 282, 2001 (1998);CrossRefGoogle Scholar
  9. 6c.
    D. Helbing, A. Hennecke, and M. Treiber, Phase diagram of traffic states in the presence of inhomogenities, Phys. Rev. Lett. 82, 4360 (1999).CrossRefGoogle Scholar
  10. 7.
    K. Nagel and S. Rasmussen, Traffic at the edge of chaos, In: Artificial Life IV, R.A. Brooks and P. Maes, (Eds.), (MIT Press, Cambridge, MA, 1994).Google Scholar
  11. 8.
    D. Helbing, New simulation models for traffic optimization, In: Proc. of the Workshop “Verkehrsplanung und -simulation” V. Claus, D. Helbing, and H.J. Herrmann, (Eds.), (Informatik Verbund Stuttgart, University of Stuttgart, 1999).Google Scholar
  12. 9.
    P.H.L. Bovy, (Ed.), Motorway Traffic Flow Analysis, (Delft University Press, Delft, 1998).Google Scholar
  13. 10.
    M. Bando, K. Hasebe, K. Nakanishi, A. Nakayama, A. Shibata, and Y. Sugiyama, Phenomenological study of dynamical model of traffic flow, J. Phys. I Prance 5, 1389 (1995).Google Scholar
  14. 11.
    D. Helbing and M. Schreckenberg, Cellular automata simulating experimental properties of traffic flows, Phys. Rev. E 59, R2505 (1999).CrossRefGoogle Scholar
  15. 12.
    D. Helbing and B.A. Huberman, Coherent moving states in highway traffic, Nature 396, 738 (1998).CrossRefGoogle Scholar
  16. 13.
    B.A. Huberman and D. Helbing, Economics-based optimization of unstable flows, Europhys. Lett. 47, 196 (1999).CrossRefGoogle Scholar
  17. 14.
    K. Nagel, D.E. Wolf, P. Wagner, and P. Simon, Two-lane traffic rules for cellular automata: A systematic approach, Phys. Rev. E 58, 1425 (1998).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • D. Helbing
    • 1
    • 2
    • 3
  • B. A. Huberman
    • 1
  • S. M. Maurer
    • 1
  1. 1.Xerox PARCPalo AltoUSA
  2. 2.II. Institute of Theoretical PhysicsUniversity of StuttgartStuttgartGermany
  3. 3.Collegium Budapest - Institute for Advanced StudyBudapestHungary

Personalised recommendations