Skip to main content

Collective Motion and Optimal Self-Organisation in Self-Driven Systems

  • Conference paper
Book cover Traffic and Granular Flow ’99

Abstract

We discuss simulations of flocking and the principle of optimal self-organisation during self-driven motion of many similar objects. In addition to driving and interaction the role of fluctuations is taken into account as well. In our models, the particles corresponding to organisms locally interact with their neighbours by choosing at each time step a velocity depending on the directions of motion of them. Our numerical studies of flocking indicate the existence of new types of transitions. As a function of the control parameters both disordered and long-range ordered phases can be observed, and the corresponding phase space domains are separated by singular “critical lines”. In particular, we demonstrate both numerically and analytically that there is a disordered-to-ordered-motion transition at a finite noise level even in one dimension. We also present computational and analytical results indicating that driven systems with repulsive interactions tend to reach an optimal state corresponding to minimal interaction. This extremal principle is expected to be relevant for a class of biological and social systems involving driven interacting entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.K. Parrish and L. Edelstein-Keshlet, Science 284, 99 (1999).

    Article  Google Scholar 

  2. C.W. Reynolds, Computer Graphics 21, 25 (1987).

    Article  Google Scholar 

  3. E.M. Rauch, M.M. Millonas, and D.R. Chialvo, Phys. Lett. A 207, 185 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet, Phys. Rev. Lett. 75, 1226 (1995).

    Article  Google Scholar 

  5. R.B. Stinchcombe, In:Phase Transitions and Critical Phenomena, C. Domb and J. Lebowitz, (Eds.), Vol. 7, (Academic Press, New York, 1983).

    Google Scholar 

  6. A. Czirók, A.-L. Barabási, and T. Vicsek, Phys. Rev. Lett. 82, 209 (1999).

    Article  Google Scholar 

  7. J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).

    Article  Google Scholar 

  8. A. Czirók, H.E. Stanley, and T. Vicsek, J. Phys. A 30, 1375 (1997).

    Article  Google Scholar 

  9. A. Czirók, E. Ben-Jacob, I. Cohen, and T. Vicsek, Phys. Rev. E 54, 1791 (1996).

    Article  Google Scholar 

  10. Y.L. Duparcmeur, H.J. Herrmann, and J.P. Troadec, J. Phys. I France 5, 1119 (1995).

    Article  Google Scholar 

  11. J.Hemmingsson, J. Phys. A 28, 4245 (1995).

    Article  Google Scholar 

  12. A. Czirók, M. Vicsek, and T. Vicsek, Physica A 264, 299 (1999).

    Article  Google Scholar 

  13. J. Kertész, D. Stauffer, and A. Coniglio, In:Percolation Structures and Processes, G.D. Deutcher, R. Zallen, and J. Adler, (Eds.), p. 121 (Adam Hilger, 1983).

    Google Scholar 

  14. D. Helbing, and T. Vicsek, New J. of Physics 1, No. 13, (1999); (see http: //www. n jp. org/).

    Google Scholar 

  15. J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes, (Springer, New York, 1987).

    Book  Google Scholar 

  16. H. Haken, Information and Self-Organization,(Springer, Berlin, 1988).

    MATH  Google Scholar 

  17. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations, (Wiley, New York, 1977).

    MATH  Google Scholar 

  18. T. Vicsek, Fractal Growth Phenomena, (World Scientific, Singapore, 1992).

    MATH  Google Scholar 

  19. D. Helbing, Quantitative Sociodynamics, (Kluwer, Dordrecht, 1995).

    MATH  Google Scholar 

  20. D. Helbing, J. Keltsch, and P. Molnár, Nature 388, 47 (1997).

    Article  Google Scholar 

  21. D. Helbing and P. Molnár, Phys. Rev. E 51, 4282 (1995).

    Article  Google Scholar 

  22. S.B. Santra, S. Schwarzer, and H. Herrmann, Phys. Rev. E 54, 5066 (1996).

    Article  Google Scholar 

  23. D. Helbing and B.A. Huberman, Nature 396, 738 (1998).

    Article  Google Scholar 

  24. D. Helbing, Verkehrsdynamik, (Springer, Berlin, 1997).

    Book  MATH  Google Scholar 

  25. R. Graham and T. Tél, In: Stochastic Processes and Their Applications, S. Albeverio, P. Blanchard, and L. Streit (Eds.), p. 153 (Kluwer, Dordrecht, 1990).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vicsek, T., Czirok, A., Helbing, D. (2000). Collective Motion and Optimal Self-Organisation in Self-Driven Systems. In: Helbing, D., Herrmann, H.J., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow ’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59751-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59751-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64109-1

  • Online ISBN: 978-3-642-59751-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics