Skip to main content

Contrast Agents for Echocardiography: Principles and Instrumentation

  • Chapter
Handbook of Contrast Echocardiography

Abstract

Contrast agents for ultrasound are unique in that they interact with, and form part of, the imaging process. Contrast imaging cannot be performed effectively without a basic understanding of this interaction and how it is exploited by the new imaging modes that have become available on modern ultrasound systems. In this chapter we consider how echocardiography might benefit from a contrast agent, describe currently available agents and explain their mode of action. We discuss the impact of ultrasound contrast on echocardiographic techniques and instrumentation and conclude with the most recent developments in this rapidly evolving field.

Shall I refuse my dinner because I do not fully understand the process of digestion?

Oliver Heaviside, 1850–1925

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ophir J, Parker KJ. Contrast agents in diagnostic ultrasound. Ultrasound Med Biol 1989; 15: 319 – 33.

    Article  PubMed  CAS  Google Scholar 

  2. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968; 3: 356 – 366.

    Article  PubMed  CAS  Google Scholar 

  3. Ziskin MC, Bonakdapour A, Weinstein DP, Lynch PR. Contrast agents for diagnostic ultrasound. Invest Radiol 1972; 6: 500 – 505.

    Article  Google Scholar 

  4. Kremkau FW, Carstensen EL. Ultrasonic detection of cavitation at catheter tips. Am J Roentgenol 1968; 3: 159 – 167.

    Google Scholar 

  5. Kerber RE, Kioschos JM, Lauer RM. Use of an ultrasonic contrast method in the diagnosis of valvular regurgitation and intracardiac shunts. Am J Cardiol 1974; 34: 722 – 727.

    Article  PubMed  CAS  Google Scholar 

  6. Reid CL, Kawanishi DT. McKay CR. Accuracy of evaluation of the presence and severity of aortic and mitral regurgitation by contrast 2-dimensional echocardiography. Am J Cardiol 1983; 52: 519 – 524.

    Article  PubMed  CAS  Google Scholar 

  7. Sahn DJ, Valdex-Cruz LM. Ultrasonic contrast studies for the detection of cardiac shunts. J Am Coll Cardiol 1984; 3: 978 – 985.

    Article  PubMed  Google Scholar 

  8. Roelandt J. Contrast echocardiography. Ultrasound Med Biol 1982; 8: 471.

    Article  PubMed  CAS  Google Scholar 

  9. Carroll BA, Turner RJ, Tickner EG, Boyle DB, Young SW Gelatin encapsulated nitrogen microbubbles as ultrasonic contrast agents. Invest Radiol 1980; 15: 260 – 266.

    Article  PubMed  CAS  Google Scholar 

  10. Feinstein SB, Shah PM, Bing RJ, et al. Microbubble dynamics visualised in the intact capillary circulation. J Am CollCardiol 1984; 4: 595 – 600.

    Article  CAS  Google Scholar 

  11. Schlief R. Echo enhancement: agents and techniques — basic principles. Adv Echo-Contrast 1994; 4: 5 – 19.

    Google Scholar 

  12. Fritzsch T, Schard M, Siegert J. Preclinical and clinical results with an ultrasonic contrast agent. Invest Radiol 1988; 23: 5.

    Article  Google Scholar 

  13. Goldberg BB, Liu JB, Burns PN, Merton DA, Forsberg E Galactose-based intravenous sonographic contrast agent: experimental studies. J Ultrasound Med 1993; 12: 463 – 70.

    CAS  Google Scholar 

  14. Fobbe F, Ohnesorge O, Reichel M,Ernst O, Schuermann R, Wolf K. Transpulmonary contrast agent and color-coded duplex sonography: first clinical experience. Radiology 1992; 185 (P): 142.

    Google Scholar 

  15. Unger E, Shen D, Fritz T, et al. Gas-filled lipid bilayers as ultrasound contrast agents. Invest Radiol 1994; 29: 134 – 136.

    Article  Google Scholar 

  16. Mattrey RF, Scheible FW, Gosink BB, Leopold GR, Long DM, Higgins CB. Perfluoroctylbromide: a liver/spleenspOfic and tumor-imaging ultrasound contrast material. Radiology 1982; 145:759–62.

    PubMed  CAS  Google Scholar 

  17. Fritzsch T, Hauff P, Heldmann F, Lüders F, Uhlendorf V, Weitschies W. Preliminary results with a new liver specific ultrasound contrast agent. Ultrasound Med Biol 1994; 20: 137.

    Article  Google Scholar 

  18. Mattrey RF, Leopold GR, van Sonnenberg E, Gosink BB, Scheible FW, Long DM. Perfluorochernicals as liver- and spleenseeking ultrasound contrast agents. J Ultrasound Med 1983; 2: 173 – 6.

    PubMed  CAS  Google Scholar 

  19. Chin CT, Burns PN. Predicting the Acoustic Response of a Microbubble Population for Contrast Imaging. Ultrasound Med Biol 2000; In press.

    Google Scholar 

  20. de Jong N. Physics of Microbubble Scattering. In: Nanda NC, Schlief R, Goldberg BB, eds. Advances in Echo Imaging Using Contrast Enhancement. Dubai: Kluwer Academic Publishers, 1997: 39 – 64.

    Chapter  Google Scholar 

  21. Apfel RE, Holland CK. Gauging the Likelihood of Cavitation From Short-Pulse, Low-Duty Cycle Diagnostic Ultrasound. Ultrasound Med Biol 1991; 17: 175 – 185.

    Article  Google Scholar 

  22. von Bibra H, Sutherland G, Becher H, Neudert J, Nihoyannopoulos P. Clinical evaluation of left heart Doppler contrast enhancement by a saccharide based transpulmonary contrast agent. The Levovist Cardiac Working Group. J Am CollCardiol 1995; 25: 500 – 8.

    Article  Google Scholar 

  23. Uhlendorf V. Physics of ultrasound contrast imaging: scattering in the linear range. IEEE Trans UFFC 1994; 41: 70 – 79.

    Google Scholar 

  24. Burns PN, Powers JE, Hope Simpson D, et al. Harmonic power mode Doppler using microbubble contrast agents: an improved method for small vessel flow imaging. Proc IEEE UFFC 1994: 1547 – 1550.

    Google Scholar 

  25. Bleeker H, Shung K, Barnhart J. On the application of ultrasonic contrast agents for blood flowmetry and assessment of cardiac perfusion. J Ultrasound Med 1990; 9: 461 – 71.

    PubMed  CAS  Google Scholar 

  26. Neppiras EA, Nyborg WL, Miller PL. Nonlinear behaviour and stability of trapped micron-sized cylindrical gas bubbles in an ultrasound field. Ultrasonics 1983; 21: 109 – 115.

    Article  Google Scholar 

  27. Burns PN, Powers JE, Fritzsch T. Harmonic imaging: a new imaging and Doppler method for contrast enhanced ultrasound. Radiology 1992; 185(P):142 Abstr).

    Google Scholar 

  28. Burns PN, Powers JE, Hope Simpson D, Uhlendorf V, Fritzsch T Harmonic contrast enhanced Doppler as a method for the elimination of clutter — In viva duplex and color studies. Radiology 1993; 189: 285.

    Google Scholar 

  29. Mulvagh SL, Foley DA, Aeschbacher BC, Klarich KK, Seward JB. Second harmonic imaging of an intravenously administered echocardiographic contrast agent: Visualization of coronary arteries and measurement of coronary blood flow. J Am Call Cardiol 1996; 27: 1519 – 25.

    Article  CAS  Google Scholar 

  30. Porter TR, Xie F, Kricsfeld D, Armbruster RW. Improved myocardial contrast with second harmonic transient ultrasound response imaging in humans using intravenous perfluorocarbon-exposed sonicated dextrose albumin. J Am Coll Cardiol 1996; 27: 1497 – 501.

    Article  PubMed  CAS  Google Scholar 

  31. Kono Y, Moriyasu F, Yamada K, Nada T, Matsumura T. Conventional and harmonic grey-scale enhancement of the liver with sonication activation of a US contrast agent. Radiology 1996; 201.

    Google Scholar 

  32. Burns PN, Wilson SR, Muradali D, Powers JE, Fritzsch T. Intermittent US harmonic contrast enhanced imaging and Doppler improves sensitivity and longevity of small vessel detection. Radiology 1996; 201: 159.

    Google Scholar 

  33. Becher H. Second harmonic imaging with Levovist: initial clinical experience, Second European Symposium on Ultrasound Contrast Imaging. Rotterdam, 1997. Erasmus Univ.

    Google Scholar 

  34. Kaul S. Myocardial contrast echocardiography in coronary artery disease: potential applications using venous injections of contrast. Am J Cardiol 1995; 75: 61 – 68.

    Article  Google Scholar 

  35. Hamilton MF, Blackstock DT Nonlinear Acoustics. San Diego: Academic Press, 1998.

    Google Scholar 

  36. Burns PN, Hope Simpson D, Averkiou MA. Nonlinear Imaging. Ultrasound Med Biol 2000; In press.

    Google Scholar 

  37. Burns PN, Wilson SR, Muradali D, Powers JE, Greener Y. Microbubble destruction is the origin of harmonic signals from FS069. Radiology 1996; 201: 158.

    Google Scholar 

  38. Hope Simpson D, Chin CT, Burns PN. Pulse Inversion Doppler: A new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Transactions UFFC 1999; 46: 372 – 382.

    Google Scholar 

  39. Tiemann K, Lohmeier S, Kuntz S, et al. Real-time contrast echo assessment of myocardial perfusion at low emission power: first experimental and clinical results using power pulse inversion imaging. Echocardiography 1999; 16: 799 – 809.

    Article  PubMed  Google Scholar 

  40. Porter TR, Xie F. Transient myocardial contrast after initial exposure to diagnostic ultrasound pressures with minute doses of intravenously injected microbubbles. Demonstration and potential mechanisms. Circulation 1995; 92: 2391 – 5.

    PubMed  CAS  Google Scholar 

  41. Uhlendorf V, Scholle F-D. Imaging of spatial distribution and flow of microbubbles using nonlinear acoustic properties. Acoustical Imaging 1996; 22: 233 – 238.

    Article  Google Scholar 

  42. Taylor KJ, Burns PN, Wells PNT Clinical Applications of Doppler Ultrasound. New York: Raven Press, 1996.

    Google Scholar 

  43. Brennan CE. Cavitation and Bubble Dynamics. New York: Oxford University Press, 1995.

    Google Scholar 

  44. Poritsky H. The collapse or growth of a spherical bubble or cavity in a viscous fluid, First U.S. National Congress on Appl. Mech, 1951.

    Google Scholar 

  45. Rayleigh L. On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity. Philosophy Magazine 1917; Series 6: 94 – 98.

    Google Scholar 

  46. Plesset MS. The dynamics of cavitation bubbles. J. Appl. Mech. 1949; 16: 272 – 282.

    Google Scholar 

  47. Child SZ, Hartman CL, Schery LA, Carstensen EL. Lung Damage from Exposure to Pulsed Ultrasound. Ultrasound in Medicine and Biology 1990; 16: 817 – 825.

    Article  PubMed  CAS  Google Scholar 

  48. Miller MW, Miller DL, Brayman A. A Review of in Vitro Bioeffects of Inertial Ultrasonic Cavitation From a Mechanistic Perspective. Ultrasound Med Biol 1996; 22: 1131 – 1154.

    Article  PubMed  CAS  Google Scholar 

  49. Miller DL, Gies RA, Chrisler WB. Ultrasonically Induced Hemolysis at High Cell and Gas Body Concentrations in a Thin-Disk Exposure Chamber. Ultrasound Med Biol 1997; 23: 625 – 633.

    Article  PubMed  CAS  Google Scholar 

  50. Miller DL, Thomas RM, Williams AR. Mechanisms for Hemolysis By Ultrasonic Cavitation in the Rotating Exposure System. Ultrasound Med Biol 1991; 17: 171 – 178.

    Article  PubMed  CAS  Google Scholar 

  51. Miller DL, Thomas RM. Ultrasound Contrast Agents Nucleate Inertial Cavitation in Vitro. Ultrasound Med Biol 1995; 21: 1059 – 1065.

    Article  PubMed  CAS  Google Scholar 

  52. Holland CK, Roy RA, Apfel RE, Crum LA. In Vitro Detection of Cavitation Induced by a Diagnostic Ultrasound System. IEEE Trans. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 1992; 29: 95 – 101.

    Article  Google Scholar 

  53. Everbach EC, Makin IRS, Francis CW, Meltzer RS. Effect of Acoustic Cavitation on Platelets in the Presence of an Echo-Contrast Agent. Ultrasound Med Biol 1998; 24: 129 – 136.

    Article  PubMed  CAS  Google Scholar 

  54. Williams AR, Kubowicz G, Cramer E. The Effects of the Microbubble Suspension SHU 454 (Echovist) on Ultrasound-Induced Cell Lysis in a Rotating Tube Exposure System. Echocardiography 1991; 8: 423 – 433.

    Article  PubMed  CAS  Google Scholar 

  55. Uhlendorf V, Hoffmann C. Nonlinear acoustical response of coated microbubbles in diagnostic ultrasound. Proc IEEE Ultrasonics Symp 1994: 1559 – 1562.

    Google Scholar 

  56. Lama GM, Wallace KD, Scott MJ, et al. Initial description and validation of a novel site targeted ultrasonic contrast agent. Circulation 1995; 92: 1 – 260.

    Google Scholar 

  57. Christy DH, Wallace KD, Lanza GM, et al. Quantitative intravascular ultrasound: demonstration using a novel site targeted acoustic contrast agent. Proc IEEE Ultrasonics Symp 1995: 1125 – 1128.

    Google Scholar 

  58. Unger EC. Drug delivery applications of ultrasound contrast agents, Second European Symposium on Ultrasound Contrast Imaging. Rotterdam, 1997. Erasmus Univ.

    Google Scholar 

  59. Greenleaf WJ, Bolander ME, Sarkar G, Goldring MB, Greenleaf JE Artificial Cavitation Nuclei Significantly Enhance Acoustically Induced Cell Transfection. Ultrasound Med Biol 1998; 24: 587 – 595.

    Article  PubMed  CAS  Google Scholar 

  60. Unaer EC, McCreery TP, Sweitzer RH. Ultrasound Enhances Gene Expression of Liposomal Transaction. Investigative Radiology 1997; 32: 723 – 727.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Harald Becher and Peter N Burns

About this chapter

Cite this chapter

Burns, P.N., Becher, H. (2000). Contrast Agents for Echocardiography: Principles and Instrumentation. In: Handbook of Contrast Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59748-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59748-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67083-4

  • Online ISBN: 978-3-642-59748-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics