Advertisement

Are GPS data normally distributed

  • C. C. J. M. Tiberius
  • K. Borre
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 121)

Abstract

Knowledge of the probability density function of the observables is not needed to routinely apply a least-squares algorithm and compute estimates for the parameters of interest. For the interpretation of the outcomes, and in particular for statements on the quality of the estimator, the probability density has to be known

A variety of tools and measures to analyse the distribution of data are reviewed and applied to code and phase observables from a pair of geodetic GPS receivers. As a conclusion the normal probability density function turns out to be a reasonable model for the distribution of GPS code and phase data, but this may not hold under all circumstances

Keywords

GPS data probability density function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. d’Agostino, R . (1986). Graphical analysis. Chapter 2 inGoodness-of-fit techniques, R. d’Agostino and M. Stephens (Eds), Vol. 68 of Statistics: textbooks and monographs. Marcel Dekker Inc., New YorkGoogle Scholar
  2. Anderson, T. and Darling, D. (1954). A test of goodness of fitJournal of the American Statistical Association, Vol. 49, No. 268, pp. 765–769CrossRefGoogle Scholar
  3. Mardia, K. (1988). Tests of univariate and multivariate normality: Chapter 9 inAnalysis of varianceP. Krishnaiah (Ed), Vol. 1 of Handbook of statistics. Elsevier Science Publishers, Amsterdam, 3rd edition.Google Scholar
  4. Pearson, E. and Hartley, H. (1966)Biometrika tables for statisticiansVol. 1. Cambridge University PressGoogle Scholar
  5. Silverman, B. (1986)Density estimation for statistics and data analysis. Monographs on statistics and applied probability. Chapman and Hall, LondonGoogle Scholar
  6. Stephens, M. (1986). Tests based on EDF statistics. Chapter 4 inGoodness-of-fit techniques, R d’Agostino and M. Stephens (Eds), Vol. 68 of Statistics: textbooks and monographs. Marcel Dekker Inc., New YorkGoogle Scholar
  7. Stuart, A. and J. Ord (1991) Classical inference and relationshipsVol. 2 of Kendall’s advanced theory of statistics. Edward Arnold, London, 5th editionGoogle Scholar
  8. Teunissen, P.J.G. (1998). Quality control and GPS. Chapter 7 in GPS for geodesy, PJG. Teunissen and A. Kleusberg (Eds). Springer Verlag, Berlin, 2nd editionGoogle Scholar
  9. Tibaius, C.C.J.M. and K Borre (1999). Probability distribution of GPS code and phase data Zeitschrift, f–r Vermessungswesen, Vol. 124, No. 8, pp. 264–273Google Scholar

Copyright information

© SPringer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • C. C. J. M. Tiberius
    • 1
  • K. Borre
    • 2
  1. 1.Department of Mathematical Geodesy and PositioningDelft University of TechnologyJA DelftThe Netherland
  2. 2.Danish GPS CenterAalborg UniversityAalborgØGermany

Personalised recommendations