Advertisement

On the wavelet determination of scale exponents in energy spectra and structure functions and their application to CCD camera data

  • S. Beth
  • T. Boos
  • W. Freeden
  • N. Casott
  • D. Deussen
  • B. Witte
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 121)

Abstract

The usage of the wavelet transform as an alternative to the determination of the power law behaviour in energy spectra and structure functions is presented. The relevant aspects of the wavelet theory axe summarized and its application on CCD camera data and wind velocity measurements is modelled.

Keywords

Wavelets structure function energy spectra refractive index fully developed turbulence wind field modelling image dancing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arneodo A, Argoul F, Barry E, Elezgaray J, Muzy J-F (1995) Ondelettes, Multifractales et Turbulence. Diderot Editeur, Arts et SciencesGoogle Scholar
  2. Bacry E (1999) LastWave 1.5 Software, http://warty.cmap.polytechnique.fr/~bacry/LastWaveGoogle Scholar
  3. Bacry E, Arneodo A, Frisch U, Gagne Y, Hopfin ger E (1991) Wavelet Analysis of Fully Developed Turbulence Data and Measurement Scaling Exponents. Turbulence and Coherent Structures, O. Metais, M. Lesieur (ads.), Selected Papers from ‘Turbulence 89: Organized Structures and Turbulence in Fluid Mechanics’, Grenoble, 18.–21. September 1989, Kluwer Academics, pp 203–215Google Scholar
  4. Beth S (1999) Spherical Vector Wavelets: Theoretical and Numerical Aspects PhD Thesis, University of Kaiserslautern, Geomathematica Group (in preparation)Google Scholar
  5. Beth S, Casott N, Deussen D, Freeden W, Witte B (1997) Wavelet Methods in Edge Detection and Refraction Optical 3-D Measurement Techniques N, Gruen, A, Kahmen, H (eds.), Wich mann Verlag, pp 76–85Google Scholar
  6. Beth S, Flreeden W (1998) Waveletmethoden zur Auswertung der geodätischea Refraktion aus CCD-Kamera-Daten. VR, 60, Nr. 7, pp 382–391Google Scholar
  7. Chui CK (1992) An Introduction to Wavelets. Academic PressGoogle Scholar
  8. Deussen D, Witte B (1997) Detecting ’Image Dancing’ for the Determination of Vertical Refraction Using a Digital Camera. Proceedings of the Second Turkish-German Joint Geodetic Days, Berlin, 28.–30. Mai, pp 895–704Google Scholar
  9. Falconer KJ (1990) Fractal Geometry. Mathematical Foundations and Applications. Wiley and Sons Ltd., ChichesterGoogle Scholar
  10. Kaimal JC, Finnigan JJ (1994) Atmospheric Boundary Layer Flows — Their Structure and Measurement. Oxford University PressGoogle Scholar
  11. Maaβ P, Stark H-G (1994) Wavelets and Digital Image Processing. Surveys on Mathematics for Industry, 4, pp 195–235Google Scholar
  12. Mallat S, Hwang WH (1992) Singularity Detection and Processing with Wavelets. IEEE Trans. Inform. Theory, 38, pp 817–643Google Scholar
  13. Parisi G, Frisch U (1984) Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, M. Ghil, R. Benzi, G. Parisi, eds., North-Holland, p 84Google Scholar
  14. Muzy J-F, Barry E, Arneodo A (1994) The Multifractal Formalism Revisited With Wavelets. International Journal of Bifurcation and Chaos, Vol. 4, No. 2, pp 245–302CrossRefGoogle Scholar
  15. Perrier V, Philipovitch T, Basdevant C (1995) Wavelet Spectra Compared to Fourier Spectra. J Math Phys, 36, pp 1506–1519CrossRefGoogle Scholar

Copyright information

© SPringer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • S. Beth
    • 1
  • T. Boos
    • 1
  • W. Freeden
    • 1
  • N. Casott
    • 2
  • D. Deussen
    • 2
  • B. Witte
    • 2
  1. 1.Geomathematics Group, Department of MathematicsUniversity of KaiserslauternKaiserlauternGermany
  2. 2.Geodetic InstituteUniversity of BonnBonnGermany

Personalised recommendations