Advertisement

The dual sphere superconducting gravimeter GWR CD029 at Frankfurt a.M. and Wettzell — first results and calibration

  • M. Harnisch
  • G. Harnisch
  • I. Nowak
  • B. Richter
  • P. Wolf
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 121)

Abstract

The first dual sphere superconducting gravimeter CD029 is operating since November 1998, at first at the test site Frankfurt A.M., further permanently at Wettzell (Bavarian Forest, Germany). The GWR dual sphere superconducting gravimeter, developed by GWR Instruments, Inc., San Diego, California, USA, enables enhanced consistencies in data and drift monitoring to achieve a high resolution and reliability for studying temporal gravity variations. The dual sphere system is equivalent to two single instruments, but the technical expenditure and the costs are considerably reduced. By differencing the signals of both systems even micro steps can be detected. The first experiences with the CD029 show, that it meets the expectations. Under regular conditions noise and drift rate are very small. No steps were observed at Wettzell down to a level of some nm s2, besides those occurred during maintenance activities. The scale factors of both systems of the C029 have been estimated by the acceleration method and by comparisons with absolute gravity measurements.

Keywords

Superconducting gravimeter calibration Earth tides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Richter, B. (1987) [1]. Das suptaleitende Gravimeter. Dt. Geodait. Kommiss., R. C, H. 329, Inst. Angew. Geodäsie, Frankfurt a.M.,126 p.Google Scholar
  2. Richter, B. and R.J. Warburton (1998) [2]. A New Generation of Superconducdng Gravimeters. Proc. 13th Int. Symp. Earth Tides, Brussels 1997. Obs. Royal Belgique, SÉr. GÉophys., Brussels, pp.545 – 555.Google Scholar
  3. Richter, B., H. Wilmes, I. Nowak and P. Wolf (1995) [3] Calibration of a Cryogenic Gravimeter (SCG TT6Q) by Artificial Accelerations and Comparisons with Absolute Measurements. Poster Presentation at the General Assembly IUGG Boulder, unpublished.Google Scholar
  4. Harnisch, M. and G. Harnisch (1995) [4] Processing of the data from two superconducdng gravimeters, recorded in 1990 — 1991 at Richmond (Miami, Florida). Some problems and results. Working Group Bonn 1994. Marees Terrestres Bull. Inf., Bruxelles 122, pp.9141 – 9147.Google Scholar
  5. Harnisch, M., G. Harnisch, B. Richter and W. Schwahn (1998). [5] Estimation of polar motion effects from time series recorded by superconducting gravimeters. Proc. 13th Int. Symp. Earth Tides, Brussels 1997. Obs. Royal Belgique, S6r. G6ophys, Brussels, pp.511- 518.Google Scholar
  6. Harnisch, M., G. Hamisch, H. Jurczyk and H. Wilmes (1999) [6]. 889 Days of Registrations with the Superconducdng Gravimeter SG103 at Wettzell (Germany). Proc. Second GGP Workshop Munsbach Castle (Luxembourg) 24–26 March, in preparation.Google Scholar
  7. Hamisch, M. and G. Hamisch (1999) [7]. Hydrological Influences in the Registrations of Superconducting Gravimeters and Ways to their Elimination. Workshop Jena 1998. Mares Terrestres Bull. Inf., Bruxelles 131, pp.10161–10170.Google Scholar
  8. Crossley, D.J., Su Xu and T. van Dam (1998) [8]. Comprehensive Analysis of 2 years of SG Data from Table Mountain, Colorado.. Proc. 13th Int. Symp. Earth Tides, Brussels 1997. Obs. Royal Belgique, Sbr. Gdophys, Brussels, pp.659 – 668.Google Scholar

Copyright information

© SPringer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • M. Harnisch
    • 1
  • G. Harnisch
    • 1
  • I. Nowak
    • 1
  • B. Richter
    • 1
  • P. Wolf
    • 1
  1. 1.Bundesamt für Kartographie and GeodäsieFrankfurt am MainGermany

Personalised recommendations