Advertisement

Data analysis for the GOCE mission

  • R. Klees
  • R. Koop
  • P. Visser
  • J. van den IJssel
  • R. Rummel
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 121)

Abstract

We investigate the time-wise approach to the data anlaysis for the GOCE mission. The number of observations collected during the mission, the number of potential coefficients to be estimated, and the complexity of the mathematical model for the time-wise approach require a special strategy, which has to reduce the CPU-time and storage requirements considerably. Our approach is based on (1) the iterative solution of the normal equations using a Richardson-iteration scheme and (2) the approximation of the design matrix in order to assemble the right-hand side in each iteration step efficiently. We demonstrate the performance of the approach for white noise and coloured noise observations along a simulated GOCE orbit up to degree and order 180. We provide error estimates anal show that the solution is unbiased. We also prove that the method does not converge to the solution of the normal equations. However, the approximation error can be neglected in our simulations.

Keywords

Gravity field determination satellite gravity gradiometry GOCE data analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alenia (1999). Gravity field and ocean circulation explorer. Phase A Study, Executive Summary, DOC: GOC-RP-A10006, Alenia Aerospazio.Google Scholar
  2. CIGAR I (1989). CIGAR I: Study on precice gravity field determination methods and mission requirements (phase 1). Final Report. ESA contract No. 7521/87/F/F/FLI, European Space Agency. CIGAR II (1990.Google Scholar
  3. CIGAR II: Study on precise gravity field determination methods and mission requirements (phase 2). Final Report. ESA contract No. 8153/88/F/FL, European Space Agency.Google Scholar
  4. CIGAR III/1 (1993). CIGAR III: Study on precice gravity field determination methods using gradiometry and GPS (phase 1). Final Report. ESA contract No. 9877/92/F/FL, European Space Agency.Google Scholar
  5. CIGAR III/2 (1995). CIGAR III: Study on precice gravity field determination methods and mission requirements (phase 2). Final Report. ESA contract No. 10713/87/F/FL, European Space.Google Scholar
  6. CIGAR IV (1996). CIGAR N: Study of advanced reduction methods for spaceborne gravimetry data, and of data combination with geophysical parameters. Final Report. ESA contract No. 152163 — ESA study ESTEC/JP/95-4 137/MS/nr, European Space Agency.Google Scholar
  7. Grafarend, E. and Schaffrin, B. (1993). Ausgleichungarsechnung in Iinearen Modellen. BI Wissenschaftsverlag, Mannheim.Google Scholar
  8. Klees, R., Koop, R., and van der IJssel, J. (1999). Fast gravity field recovery from GOCE gravity gradient observations. (In preparation).Google Scholar
  9. Koop, R. (1993). Global gravity field modelling using satellite gravity gradiometry. Publications on Geodesy, New Series, Number 38, Netherlands Geodetic Commission.Google Scholar
  10. Rapp, R., Wang, Y., and Pavlis, N. (1991). The Ohio State 1991 geopotential and sea surface topography harmonic coefficient model.Report 4 10, Dept. of Geodetic Science and Surveying, The Ohio State University.Google Scholar
  11. Rummel, R, van Gelderen, M, Koop, R, E, ES, Sansó, F, Brovelli, M, Migliaccio, F, and Sacerdote, F (1993). Spherical harmonic analysis of satellite gradiometry. Publications on Geodesy, New Series, Number 39, Netherlands Geodetic Commission.Google Scholar

Copyright information

© SPringer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • R. Klees
    • 1
  • R. Koop
    • 1
  • P. Visser
    • 1
  • J. van den IJssel
    • 1
  • R. Rummel
    • 2
  1. 1.Delft Institute for Earth Oriented Space Research (DEOS)Delft University of TechnologyJA DelftThe Netherlands
  2. 2.Institut für.Astronomische and Physikalische GeodäsieMunich University of TechnologyMunichGermany

Personalised recommendations