Advertisement

Recovering the global gravitational field from satellite measurements of the full gravity gradient

  • M. S. Petrovskaya
  • J. B. Zieliński
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 121)

Abstract

The problem of recovering the earth’s potential coefficients \({\bar C_{nm}}\) n,m from satellite gradiometry missions is studied by the space-wise approach. The conventional procedure of solving this problem is based on constructing from the start several boundary value (BV) relations, each of them corresponding to a separate second order potential derivative. In the present paper an optimal approach is elaborated for solving the spaceborne scalar boundary value problem in which the external gravitational field is reproduced from the total magnitude Γ of the gravity gradient measured in a spacecraft. Correspondingly, instead of constructing a set of BV equations, a unique one is derived combining the components of the gravity gradient tensor and the first order potential derivatives entering the expression for Γ. This equation is solved analytically in form of a quadrature formula for \({\bar C_{nm}}\) n,m , depending on the observed anomaly △Γ of the gravity gradient magnitude Γ.

Keywords

Gravitational potential satellite gradiometry spaceborne boundary value problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertella, A., F. Migliaccio, F. Sansó (1995a). Global gravity field recovery by use of STEP observations. In: Proc. Of IAG Symposia, Vol. 113, «Gravity and Geoid«. Sünkel, H. Marson, I. (eds), Springer, Berlin Heidelberg, New York, pp.111–115.Google Scholar
  2. Albertella A. F. Migliaccio F. Sansó(1995b). Application of the concept of biorthogonal series to a simulation of a gradiometric mission. In: Proc. of IAG Symposia, Vol. 114«Geodetic Theory Today». Sansó, F. (ed), Springer Berlin, Heidelberg, New York, pp. 350–361.Google Scholar
  3. Koop R. (1993). Global gravity field modeling using satellite gravity gradiometry. Netherlands Geodetic Commission New SeriesNo 38.Google Scholar
  4. Petrovskaya, MS. (1996). Optimal approach to the investigation of the Earth’s gravitational field by means of satellite gradiometry.Artificial Satellites Vol. 31 No 1 Warsawa, pp. 1–23.Google Scholar
  5. PetrovskaYa, MS . (1997). Global gravity field determination from STEPmission gradiometry observations. In: Proc. of IAG Symposia «Gravity, Geoid and Marine Geodesy».Segawa J. Fujimoto H. Okubo S. eds Vol. 117, Springer, Berlin, Heidelberg, New York, pp. 188–195.Google Scholar
  6. Petrovskaya, MS. JB Zieliński 1997. Determination of the global and regional gravitational fields from satellite and balloon gradiometry observations. Advances in Space ResearchVol. 19 No 11, pp. 1723–1728.CrossRefGoogle Scholar
  7. Petrovskaya, MS. JB Zieliński (1998). Evaluation of the regional gravity anomaly from balloon gradiometry. Bollettino di Geodesia e Scienze Affini, No 2 Firenze Italy, pp. 141–164.Google Scholar
  8. Petrovskaya, MS. JB Zieliński (1999). Solution of the airborne gradiometry bound value problem for the height anomaly and gravity anomaly. Bollettino di Geodesia e Scienze Affini, No 1 Firenze, Italy, pp. 33– 51.Google Scholar
  9. Rummel R. (1986). Satellite Gradiome. In: Lecture Notes to Earth Sciences “Mathematical and Numerical Techniques in Physical Geodesy” Sünkel, H. ed, Vol. 7 Springer-Verlag17, Berlin.Google Scholar
  10. Rummel, R.OL Colombo (1985). Gravity field determination from satellite gradiometry. Bulletin Geodesique, Vol. 59, pp. 233–246.CrossRefGoogle Scholar
  11. Rummel R., F. Sansó, M. Van Gelderen, P. Koop, E. Schrama M. Brovelli F. Miggliaccio, F. Sacerdote (1993). Spherical harmonic analysis of satellite gradiometry. Netherlands Geodetic Commission, New Series, No 39.Google Scholar

Copyright information

© SPringer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • M. S. Petrovskaya
    • 1
  • J. B. Zieliński
    • 2
  1. 1.Main (Pulkovo) Astronomical Observatory of Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Space Research Center of Polish Academy of SciencesWarsawPoland

Personalised recommendations