Earth scale below a part per billion from Satellite Laser Ranging

  • D. E. Smith
  • R. Kolenkiewicz
  • P. J. Dunn
  • M. H. Torrence
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 121)


Since the LAGEOS I satellite was launched in 1976, the systematic instrument error of the best satellite laser ranging observatories has been steadily reduced to the current level of only a few millimeters. Advances in overall system accuracy, in conjunction with improved satellite, Earth, orbit perturbation and relativity modeling, now allows us to determine the value of the geocentric gravitational coefficient (GM) to less than a part per billion (ppb). This precision has been confirmed by observations of the LAGEOS II satellite, and is supported by results from Starlette, albeit at a lower level of precision. When we consider observations from other geodetic satellites orbiting at a variety of altitudes and carrying somewhat more complex retro-reflector arrays, we obtain consistent measures of scale, which however must be based upon empirically determined, satellite-dependent detector characteristics. We arrive at an estimate of GM of 398600.44187 +/-.00020 km3/sec2, which lies within the 2 ppb uncertainty of the current standard, but differs from it by more than the error of the new estimate. Both the current standard and our recommended value fall comfortably within the ten ppb uncertainty of that determined from the most accurate alternative from lunar laser ranging observations. The precision of the estimate of GM from satellite laser ranging has improved by an order of magnitude in each of the last two decades, and we will discuss projected advances which will result in further refinements of this measure of Earth scale.


Satellite Laser Ranging Earth’s scale 


  1. Appleby, G, Center of Mass Corrections for LAGEOS and Etalon for Single-Photon Ranging Systems, Proc. Eurolas Meeting, Munich, 1995Google Scholar
  2. Bosworth, J. M., R. J. Coates & T. L. Fischetti, The Development of NASA’s Crustal Dynamics Project, Contributions of Space Geodesy in Geodynamics: Crustal Dynamics, AGU Geodynamics Series, 25, 1–20, 1993Google Scholar
  3. Damour, T., GW. Gibbons, JH Taylor, Phys. Rev. Lett., 61, 1151, 1988Google Scholar
  4. Degnan, JJ., Satellite Laser Ranging: Current Status and Future Prospects, IEEE Transactions on Geoscience and Remote Sensing, GE- 23, 4, 398–413, 1985.Google Scholar
  5. Degnan, JJ ., Millimeter Accuracy Satellite Laser Ranging, Contributions of Space Geodesy to Geodynamics: Technology, AGU Geodynamics Series, 25, 133– 162, 1993.CrossRefGoogle Scholar
  6. Degnan, JJ. and J. McGarry, SLR2000: Eyesafe and autonomous satellite laser ranging at kilohertz rates, Proc. Conf. on Laser Radar Techniques, European Symposium on Aerospace Remote Sensing, 1997Google Scholar
  7. Dickey, JO., PL Bender, JE Faller, XX Newhall, RL Ricklefs, JGRies, PJ Shelus, C Veillet, AL Whipple, JR Wiant, JG Williams and CF Yoder, Lunar Laser Ranging: A Continuing Legacy of the Apollo Program, Science, 265, 22 July, 1994.Google Scholar
  8. Dunn,P., M.Tonence, R.Kolenkiewicz and D.Smith, Earth Scale defined by Modern Satellite Ranging Observations, Geophys. Res. Lett., 26, 10,1489– 1492, 1999CrossRefGoogle Scholar
  9. Heilings, R.W. et al., Phys. Rev. Lett., 51, 1609, 1983.CrossRefGoogle Scholar
  10. La, D and P. J. Steinhardt, Phys. Rev. Lett, 62, 376, 1989.CrossRefGoogle Scholar
  11. Lemoine, FG., DE Smith, L. Kunz, R. Smith, EC Pavlis, NK Pavlis, SM Klosko, DS Chinn, MH Torrence, RG Williamson, CM Cox, KE Rachlin, YM Wang, SC Kenyon, R Salman, R. Trimmer, RH Rapp, and RS Nerem, “The Development of the NASA GSFC and NIMA Joint Geopotential Model”, Gravity, Geoid and Marine Geodesy, Vol. 117, International Association of Geodesy Symposia, J. Segawa, H. Fujimoto, S. Okubo (editors), pp 461–469, 1997.Google Scholar
  12. Lerch, J.F., R.E Laubscher, S.M. Klosko, D.E. Smith, R. Kolenkiewicz, B.H. Putney, J.G. Marsh and J.E. Brownd, Determination of the geocentric gravitational constant from laser ranging on near-earth satellites, Geophys. Res. Let., 5(12), December, 1978.CrossRefGoogle Scholar
  13. Martin, C. F., M. H. Torrence & C. W. Meisner, Relativistic Effects on an Earth-Orbiting Satellite in the Barycenter Coordinate System, JGR 90, 9403– 9410, 1985.Google Scholar
  14. Martin, C.F. and D. P. Rubincam, Earth albedo affects on LAGEOS I satellite based on Earth radiation Budget (ERBE) satellite measurements, EOS, paper G32A-3, Spring Meeting of the AGU, Baltimore, MD, 1993.Google Scholar
  15. Minott, P. O, T. W. Zagwodzki, T. Varghese, and M. Selden, “ Prelaunch Optical Characterization of the Laser Geodynamics Satellite (LAGEOS 2)”, NASA TP-3400, Sept, 1993.Google Scholar
  16. Neubert, R., Satellite signature model: Application to Lageos and Topex, Proc. Eurolas Meeting, Munich, 1995.Google Scholar
  17. Neubert, R., Satellite signature model: Application to Lageos and Topex, Proc. Eurolas Meeting, Munich, 1995.Google Scholar
  18. Putney, BH., R. Kolenkiewicz, DE Smith, PJ Dunn and MH Torrence, “Precision Orbit Determination at the NASA Goddard Space Flight Center”, Adv. Space Res., V.10, No. 3, pp. 197– 203, 1990CrossRefGoogle Scholar
  19. Ries, JC., RJ Eaves, CK. Shum, and MM Watkins, Progress in the determination of the gravitational coefficient of the Earth, Geophys. Res. Lett., 19(6), 529– 531, 1992.CrossRefGoogle Scholar
  20. Ries, JC, RJ Eaves, C. Huang, BE Schutz, CK Shum,BD Tapley, MM Watkins and DN Yuan, Determination of the gravitational coefficient of the Earth from near-Earth satellites. Geophys. Res. Lett.,16(4),271– 274, April 1989.CrossRefGoogle Scholar
  21. Ries, J.C., C. Huang and M.M. Watkins, Effect of General Relativity on a Near-earth Satellite in the Geocentric and Barycentric Reference Frames, Phys. Rev. Ltrs., 61, 8, 1988Google Scholar
  22. Smith, DE., DC Christodoulidis, R. Kolenkiewicz, PJ Dunn, SM Klosko, MH Torrence, S. Fricke and S. Blackwell, A Global Geodetic Reference Frame from LAGEOS Ranging (SLS.IAP), JGR, 90 (B11) 9221– 9234, 1985.CrossRefGoogle Scholar
  23. Tapley, B. D., B. E. Schutz & R. J. Eaves, Station Coordinates, Baselines, and Earth Rotation from LAGEOS Laser Ranging: 1976–1984,1985 JGR - V.90, pp.9235–9248.Google Scholar

Copyright information

© SPringer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • D. E. Smith
    • 1
  • R. Kolenkiewicz
    • 1
  • P. J. Dunn
    • 2
  • M. H. Torrence
    • 2
  1. 1.Laboratory for Terrestrial PhysicsNASA GSFCGreenbeltUSA
  2. 2.Raytheon CorpGreenbeltUSA

Personalised recommendations