Advertisement

Microfluidic Devices on Polymer Substrates for Bioanalytical Applications

  • Yuehe Lin
  • Dean W. Matson
  • Dean E. Kurath
  • Jenny Wen
  • Fan Xiang
  • Wendy D. Bennett
  • Peter M. Martin
  • Richard D. Smith
Conference paper

Abstract

Development of capabilities to miniaturize analytical devices and components offers a number of potential benefits. Among these are the ability to reduce sample sizes, development of low cost, single-use disposable devices, and improved device portability. Extensive work has been done on producing such microanalytical systems on silicon or glass substrates using processes commonly employed in electronic chip manufacturing [1–2]. For many analytical applications, however, common polymeric materials provide acceptable substrates from which to produce components or complete analytical systems [3–4]. The low flow rate characteristic of these microfluidic devices is compatible with the electrospray ionization/mass spectrometry (ESI-MS) [5–7]. In this paper, development of microfluidic analytical devices fabricated on polymer substrates using excimer laser micromachining technology will be described. These include a microfluidic motherboard, dual-stage microdialysis chip, and a micro capillary isoelectric focusing device. The applications of these micr ode vices for cleanup, fractionation, and separation of biological samples are discussed.

Keywords

Microfluidic Device Excimer Laser Protein Mixture Pacific Northwest National Laboratory Sample Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harrison, D.J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C.S.; Manz, A. Science, 1993, 261, 895CrossRefGoogle Scholar
  2. 2.
    Kop, M.U.; deMello, A.J.; Manz, A., Science, 1998, 280, 1046–1048CrossRefGoogle Scholar
  3. 3.
    McCormick, R.M.; Nelson, R.J.; Alonso-Amigo, M.G.; Benvegnu, D.J.; and Hooper, H.H., Anal. Chem., 1997, 69, 2626–2630.CrossRefGoogle Scholar
  4. 4.
    Martin, P.M.; Matson, D.W.; Bennett, W.D.; Lin, Y., Hammerstrom, D.J., J. of Vacuum Science and Technology; In pressGoogle Scholar
  5. 5.
    Xue, Q.F.; Foret, F.;. Dunayevskiy, Y. M.; Zavracky, P. M.; McGruer, N. E. and Karger, B. L., Anal. Chem., 1997, 69, 426–430CrossRefGoogle Scholar
  6. 6.
    Xu, N.; Lin, Y.; Hofstadler, S.A.; Matson, D.W.; Call, C.J. and Smith, R.D. Anal. Chem., 1998, 70, 3553–3556CrossRefGoogle Scholar
  7. 7.
    Lin, Y.; Xu, N.; Matson, D.W.; Smith, R.D., in the Micro Total Analysis Systems; Ed.: Harrison, D.J. and den Berg, A.V., pp343–346, Kluwer Academic Publishers, Boston, 1998CrossRefGoogle Scholar
  8. 8.
    Matson, D.W.; Martin, P.M.; Kurath, D.E.; Lin, Y.; Hammerstrom, D.J., in the Micro Total Analysis Systems, Ed.: Harrison, D.J. and den Berg, A.V., pp371–374, Kluwer Academic Publishers, 1998CrossRefGoogle Scholar
  9. 9.
    Liu, C. L.; Hofstadler, S. A.; Bresson, J. A.; Udsetli, H. R.; Tsukuda, T.; Smith, R. D., Anal. Chem. 1998, 70, 1797–1801.CrossRefGoogle Scholar
  10. 10.
    Xiang, F.; Lin, Y.; Wen, J.; Matson, D.W.; Smith, R.D, Anal Chem.,In pressGoogle Scholar

Copyright information

© Battelle, PNNL 1999

Authors and Affiliations

  • Yuehe Lin
    • 1
  • Dean W. Matson
    • 1
  • Dean E. Kurath
    • 1
  • Jenny Wen
    • 1
  • Fan Xiang
    • 1
  • Wendy D. Bennett
    • 1
  • Peter M. Martin
    • 1
  • Richard D. Smith
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations