A Comparison of Discontinuous and Continuous Galerkin Methods Based on Error Estimates, Conservation, Robustness and Efficiency

  • Thomas J. R. Hughes
  • Gerald Engel
  • Luca Mazzei
  • Mats G. Larson
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 11)


The Discontinuous Galerkin Method (DGM) and Continuous Galerkin Method (CGM) are investigated and compared for the advection problem and the diffusion problem. First, error estimates for Stabilized Discontinuous Galerkin Methods (SDGMs) are presented. Then, conservation laws are discussed for the DGM and CGM. An advantage ascribed to the DGM is the local flux conservation property. It is remarked that the CGM is not only globally conservative, but locally conservative too when a simple post-processing procedure is used. Next, the robustness of different DGMs is investigated numerically. Lastly, the efficiency of the DGM and CGM is compared.


Galerkin Method Small Eigenvalue Dirac Delta Function Diffusion Problem Discontinuous Galerkin Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Becker and P. Hansbo. A Finite Element Method for Domain Decomposition with Non-Matching Grids. Technical Report 3613, INRIA, Sophia Antipolis, France, Jan. 1999.Google Scholar
  2. 2.
    S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 1994.zbMATHGoogle Scholar
  3. 3.
    M. L. Delves and C. A. Hall. An Implicit Matching Principle for Global Element Calculations. J. Inst. Maths. Appl., 23: 223–234, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    T. J. R. Hughes, G. Engel, L. Mazzei, and M. G. Larson. The Continuous Galerkin Method is Locally Conservative. Preprint, 1999.Google Scholar
  5. 5.
    C. Johnson and J. Pitkäranta. An Analysis of the Discontinuous Galerkin Method for a Scalar Hyperbolic Equation. Math. Comp., 46: 1–26, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet Problem bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg, 36: 9–15, 1971.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    J. T. Oden, I. Babuska, and C. E. Baumann. A Discontinuous hp Finite Element Method for Diffusion Problems. J. Comput. Phys., 146: 491–519, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    R. Stenberg. On some Techniques for Approximating Boundary Conditions in the Finite Element Method. J. Comput. Appl. Math, 63: 139–148, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    R. Stenberg. Mortaring by a Method of J. A. Nitsche. In S. Idelsohn, E. Ouate, and E. Dvorkin, editors, Computational Mechanics-New Trends and Applications. CIMNE, Barcelona, Spain, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Thomas J. R. Hughes
    • 1
  • Gerald Engel
    • 1
  • Luca Mazzei
    • 1
  • Mats G. Larson
    • 1
  1. 1.Division of Mechanics and ComputationStanford UniversityStanfordUSA

Personalised recommendations