Advertisement

Software for the Parallel Adaptive Solution of Conservation Laws by Discontinuous Galerkin Methods

  • J. E. Flaherty
  • R. M. Loy
  • M. S. Shephard
  • J. D. Teresco
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 11)

Abstract

We develop software tools for the solution of conservation laws using parallel adaptive discontinuous Galerkin methods. In particular, the Rensselaer Partition Model (RPM) provides parallel mesh structures within an adaptive framework to solve the Euler equations of compressible flow by a discontinuous Galerkin method (LOCO). Results are presented for a Rayleigh-Taylor flow instability for computations performed on 128 processors of an IBM SP computer. In addition to managing the distributed data and maintaining a load balance, RPM provides information about the parallel environment that can be used to tailor partitions to a specific computational environment.

Keywords

Message Passing Interface Discontinuous Galerkin Discontinuous Galerkin Method Unstructured Mesh Mesh Entity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. W. Beall and M. S. Shephard. A general topology-based mesh data structure. Int. J. Numer. Meth. Engng., 40 (9): 1573–1596, 1997.MathSciNetCrossRefGoogle Scholar
  2. 2.
    K. S. Bey, A. Patra, and J. T. Oden hp-version discontinuous Galerkin methods for hyperbolic conservation laws: a parallel adaptive strategy. Int. J. Numer. Meth. Engng., 38 (22): 3889–3907, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    R. Biswas, K. D. Devine, and J. E. Flaherty. Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math., 14: 255–283, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    K. Clark, J. E. Flaherty, and M. S. Shephard. Appl. Numer. Math., special ed. on Adaptive Methods for Partial Differential Equations, 14, 1994.Google Scholar
  5. 5.
    B. Cockburn, S.-Y. Lin, and C.-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-Dimensional systems. J. Comput. Phys., 84: 90–113, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    B. Cockburn and C.-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comp., 52: 411–435, 1989.MathSciNetzbMATHGoogle Scholar
  7. 7.
    P. Colella. Glimm’s method for gas dynamics. SIAM J. Scien. Stat. Comput., 3 (1): 76–110, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    P. Colella and P. R. Woodward. The piecewise parabolic (PPM) method for gas-dynamical simulations. J. Comput. Phys., 54: 174–201, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    K. D. Devine, J. E. Flaherty, R. Loy, and S. Wheat. Parallel partitioning strategies for the adaptive solution of conservation laws. In I. Babuška, J. E. Flaherty, W. D. Henshaw, J. E. Hoperoft, J. E. Oliger, and T. Tezduyar, editors, Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations, volume 75, pages 215–242, Berlin-Heidelberg, 1995. Springer-Verlag.Google Scholar
  10. 10.
    J. E. Flaherty, M. Dindar, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H. Ziantz. An adaptive and parallel framework for partial differential equations. In D. F. Griffiths, D. J. Higham, and G. A. Watson, editors, Numerical Analysis 1997 (Proc. 17th Dundee Biennial Conf.), number 380 in Pitman Research Notes in Mathematics Series, pages 74–90. Addison Wesley Longman, 1998.Google Scholar
  11. 11.
    J. E. Flaherty, R. M. Loy, C. Özturan, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H. Ziantz. Parallel structures and dynamic load balancing for adaptive finite element computation. Appl. Numer. Math., 26: 241–263, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H. Ziantz. Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. IMA Preprint Series 1483, Institute for Mathematics and its Applications, University of Minnesota, 1997. To appear, J. Parallel and Dist. Comput.Google Scholar
  13. 13.
    B. Fryxell. Personal communication.Google Scholar
  14. 14.
    B. Fryxell, E. Müller, and D. Arnett. Hydrodynamics and nuclear burning. Max-Planck-Institut für Astrophysik Report 449, 1989.Google Scholar
  15. 15.
    W. L. Kleb and J. T. Batina. Temporal adaptive Euler/Navier-Stokes algorithm involving unstructured dynamic meshes. AIAA J., 30 (8): 1980–1985, 1992.zbMATHCrossRefGoogle Scholar
  16. 16.
    R. M. Loy. Adaptive Local Refinement with Octree Load-Balancing for the Parallel Solution of Three-Dimensional Conservation Laws. PhD thesis, Computer Science Dept., Rensselaer Polytechnic Institute, Troy, 1998.Google Scholar
  17. 17.
    R. A. Ludwig, J. E. Flaherty, F. Guerinoni, P. L. Baehmann, and M. S. Shephard. Adaptive solutions of the Euler equations using finite quadtree and octree grids. Computers and Structures, 30: 327–336, 1988.zbMATHCrossRefGoogle Scholar
  18. 18.
  19. 19.
    Message Passing Interface Forum, University of Tennessee, Knoxville, Tennessee. MPI: A Message Passing Interface Standard, first edition, 1994.Google Scholar
  20. 20.
    L. Oliker, R. Biswas, and R. C. Strawn. Parallel implementaion of an adaptive scheme for 3D unstructured grids on the SP2. In Proc. 3rd International Workshop on Parallel Algorithms for Irregularly Structured Problems, Santa Barbara, 1996.Google Scholar
  21. 21.
    M. S. Shephard, S. Dey, and J. E. Flaherty. A straightforward to construct shope functions for variable p-order meshes. Comp. Meth. in Appl. Mech. And Engng., 147:209–233,1997.zbMATHCrossRefGoogle Scholar
  22. 22.
    M. S. Shephard, J. E. Flaherty, C. L. Bottasso, H. L. de Cougny, C. Özturan, and M. L. Simone. Parallel automatic adaptive analysis. Parallel Comput., 23: 1327–1347, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    M. S. Shephard, J. E. Flaherty, H. L. de Cougny, C. Özturan, C. L. Bottasso, and M. W. Beall. Parallel automated adaptive procedures for unstructured meshes. In Parallel Comput. in CFD, number R-807, pages 6.1–6. 49. Agard, Neuilly-Sur-Seine, 1995.Google Scholar
  24. 24.
    C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys., 27: 1–31, 1978.CrossRefGoogle Scholar
  25. 25.
    P. K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal, 21: 995–1011, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    J. D. Teresco, M. W. Beall, J. E. Flaherty, and M. S. Shephard. A hierarchical partition model for adaptive finite element computation. To appear, Comp. Meth. in Appl. Mech. and Engng., 1998.Google Scholar
  27. 27.
    B. Van Leer. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys., 23: 276–299, 1977.CrossRefGoogle Scholar
  28. 28.
    B. Van Leer. Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s methods. J. Comput. Phys., 32: 101–136, 1979.CrossRefGoogle Scholar
  29. 29.
    B. Van Leer. Flux vector splitting for the Euler equations. ICASE Report 82–30, ICASE, NASA Langley Research Center, Hampton, 1982.Google Scholar
  30. 30.
    Y.-N. Young, H. Tufo, and R. Rosner. On the miscible Rayleigh-Taylor instability: Mixing layer width scaling in 2 and 3-d. In progress, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • J. E. Flaherty
    • 1
  • R. M. Loy
    • 2
  • M. S. Shephard
    • 1
  • J. D. Teresco
    • 1
  1. 1.Scientific Computation Research Center (SCOREC) and Department of Computer ScienceRensselaer Polytechnic InstituteTroyUSA
  2. 2.Mathematics and Computer Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations