Advertisement

A Posteriori Error Estimation for Adaptive Discontinuous Galerkin Approximations of Hyperbolic Systems

  • Mats G. Larson
  • Timothy J. Barth
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 11)

Abstract

This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

Keywords

Posteriori Error Discontinuous Galerkin Discontinuous Galerkin Method Dual Solution Posteriori Error Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. J. Barth. Simplified discontinuous Galerkin methods for systems of conservation laws with convex extension, 1999. Proceedings of the 1st International Conference on Discontinuous Galerkin Methods.Google Scholar
  2. 2.
    T. J. Barth. Simplified discontinuous Galerkin methods for systems of conservation laws with convex extension. Math. Comp., submitted 1999.Google Scholar
  3. 3.
    T.J. Barth. Numerical methods for gasdynamic systems on unstructured meshes. In An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Vol 5 of LNCSE, pages 195–285. Springer-Verlag, Heidelberg, 1998.Google Scholar
  4. 4.
    R. Becker and R. Rannacher. Weighted a posteriori error control in FE methods. In Proc. ENUMATH-97 Heidelberg. World Scientific Pub., Singapore, 1998.Google Scholar
  5. 5.
    K. Bey. A Runge-Kutta discontinuous finite element method for high speed flows. Technical Report 91–1575, AIAA, Honolulu, Hawaii, 1991.Google Scholar
  6. 6.
    G. Chiocchia. Exact solutions to transonic and supersonic flows. Technical Report AR-211, AGARD, 1985.Google Scholar
  7. 7.
    B. Cockburn, S.Y. Lin, and C.W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: 1-D systems. J. Comp. Phys., 84: 90–113, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    B. Cockburn and C.W. Shu. The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multi-D systems. J. Comput. Phys., 141: 199–224, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to numerical methods for differential equations. Acta Numerica, pages 105–158, 1995.Google Scholar
  10. 10.
    M. Giles, M. Larson, M. Levenstam, and E. Süli. Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow. preprint NA-97/06, Comlab, Oxford University, 1997.Google Scholar
  11. 11.
    C. Johnson and J. Pitkäranta. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp., 46: 1–26, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    C. Johnson, R. Rannacher, and M. Boman. Numerics and hydrodynamics stability theory: towards error control in CFD. SIAM J. Numer. Anal., 32: 1058–1079, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    M. G. Larson. Analysis of Adaptive Finite Element Methods. PhD thesis, Department of Applied Mathematics, Chalmers University, Göteberg, Sweden, 1996.Google Scholar
  14. 14.
    J. T. Oden and S. Prudhomme. Goal-oriented error estimation and adaptivity for the finite element method. Technical Report 99–015, TICAM, U. Texas, Austin,TX, 1999.Google Scholar
  15. 15.
    M. Parashivoiu, J. Peraire, and A. Patera. A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations. Comput. Meth. Appl. Mech. Engrg., 150: 289–312, 1997.CrossRefGoogle Scholar
  16. 16.
    E. Süli. A posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems. In An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Vol. 5 of LNCSE, pp. 122–194. Springer-Verlag, Heidelberg, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Mats G. Larson
    • 1
  • Timothy J. Barth
    • 2
  1. 1.Mechanics and ComputationStanford UniversityStanfordUSA
  2. 2.NAS DivisionNASA Ames Research CenterUSA

Personalised recommendations