Advertisement

A Posteriori Error Estimate in the Case of Insufficient Regularity of the Discrete Space

  • Guido Kanschat
  • Franz-Theo Suttmeier
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 11)

Abstract

We derive a posteriori error estimates for the nonconforming rotated bilinear element. The estimates are residual based and make use of weight factors obtained by a duality argument. Galerkin orthogonality requires the introduction of additional local trial functions. We show that their influence is of higher order and that they can be neglected. The validity of the estimate is demonstrated by computations for the Laplacian and for Stokes’ equations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Num. Math., 4: 237–264, 1997.MathSciNetGoogle Scholar
  2. 2.
    E. Dari, R. Duran, C. Padra, and V. Vampa. A posteriori error estimators for nonconforming finite element methods. RAIRO M 2 AN, 30 (4): 385–400, 1996.MathSciNetzbMATHGoogle Scholar
  3. 3.
    R. H. W. Hoppe and B. Wohlmuth. Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. RAIRO, M 2 AN, 30 (2): 237–263, 1996.MathSciNetzbMATHGoogle Scholar
  4. 4.
    G. Kanschat. Parallel and Adaptive Galerkin Methods for Radiative Transfer Problems. Dissertation, Universität Heidelberg, 1996.Google Scholar
  5. 5.
    G. Kanschat and F.-T. Suttmeier. A posteriori error estimates for nonconforming finite element schemes. Calcolo,1999. to appear.Google Scholar
  6. 6.
    R. Rannacher and S. Turek. Simple nonconforming quadrilateral stokes element. Num. Meth. PDE, 8 (2): 97–111, March 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    F. T. Suttmeier. Adaptive Finite Element Approximation of Problems in Elasto-Plasticity Theory. Dissertation, Universität Heidelberg, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Guido Kanschat
    • 1
  • Franz-Theo Suttmeier
    • 2
  1. 1.Institut für Angewandte MathematikUniversität Heidelberg, INF 294HeidelbergGermany
  2. 2.Fachbereich Mathematik, Lehrstuhl XUniversität DortmundDortmundGermany

Personalised recommendations