Skip to main content

The Development of Discontinuous Galerkin Methods

  • Conference paper
Discontinuous Galerkin Methods

Abstract

In this paper, we present an overview of the evolution of the discontinuous Galerkin methods since their introduction in 1973 by Reed and Hill, in the framework of neutron transport, until their most recent developments. We show how these methods made their way into the main stream of computational fluid dynamics and how they are quickly finding use in a wide variety of applications. We review the theoretical and algorithmic aspects of these methods as well as their applications to equations including nonlinear conservation laws, the compressible Navier-Stokes equations, and Hamilton-Jacobi-like equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Adjerid, M. Aiffa, and J. E. Flaherty. Computational methods for singularly perturbed systems. In J. Cronin and R.E. O’Malley, editors, Singular Perturbation Concepts of Differential Equations, AMS Proceedings of Symposia in Applied Mathematics. AMS, 1998.

    Google Scholar 

  2. S. Adjerid, M. Aiffa, and J.E. Flaherty. High-order finite element methods for singularly-perturbed elliptic and parabolic problems. SIAM J. Appl. Math., 55: 520–543, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Adjerid, J.E. Flaherty, and L. Krivodonova. Superconvergence and a posteriori error estimation for continuous and discontinuous Galerkin methods applied to singularly perturbed parabolic and hyperbolic problems. in preparation.

    Google Scholar 

  4. D. Aharoni and A. Barak. Parallel iterative discontinuous Galerkin FEM. In this volume, 1999.

    Google Scholar 

  5. S.R. Allmaras A coupled Euler/Navier Stokes algorithm for 2-D unsteady transonic shock/boundary-layer interaction. PhD thesis, Massachussetts Institute of Technology, 1989.

    Google Scholar 

  6. S.R Allmaras and M.B.Giles. A second order flux split scheme for the unsteady 2-D Euler equations on arbitrary meshes. In 8th. AIAA Computational Fluid Dynamic Conference, Honolulu, Hawai, June 9–11,1987. AIAA 87–1119CP.

    Google Scholar 

  7. S.R. Allmaras and M.B.Giles. A coupled Euler/Navier-Stokes algorithm for 2-D transonic flows. In 27th. Aerospace Sciences Meeting, Reno, Nevada, January, 9–12, 1989.

    Google Scholar 

  8. D. Arnold, F. Brezzi, B. Cockburn, and D. Marini. DG methods for elliptic problems. In this volume, 1999.

    Google Scholar 

  9. D.N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19: 742–760, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Atkins. Steps toward a robust high-order simulation tool for aerospace applications. In this volume, 1999.

    Google Scholar 

  11. H.L. Atkins and C.-W. Shu. Quadrature-free implementation of discontinuous Galerkin methods for hyperbolic equations. AIAA Journal, 36: 775–782, 1998.

    Article  Google Scholar 

  12. S. Augoula and R. Abgrall. A discontinuous prjection algorith for Hamilton-Jacobi equations. In this volume, 1999.

    Google Scholar 

  13. F.P.T. Baaijiens, A.C.B. Bogaerds, and W.M.H. Verbeeten. Successes and failures of discontinuous Galerkin methods in viscoelastic fluid analysis. In this volume, 1999.

    Google Scholar 

  14. A. Bahhar, J. Baranger, and D. Sandri. Galerkin discontinuous approximation of the transport equation and viscoelastic fluid flow on quadrilaterals. Numer. Methods Partial Differential Equations, 14: 97–114, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  15. G.A. Baker. Finite element methods for elliptic equations using nonconforming elements. Math. Comp., 31: 45–59, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  16. G.A. Baker, W.N. Jureidini, and O.A. Karakashian. Piecewise solenoidal vector fields and the Stokes problem. SIAM J. Numer. Anal., 27: 1466–1485, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Bar-Yoseph. Space-time discontinuous finite element approximations for multidimensional nonlinear hyperbolic systems. Comput. Mech., 5: 145–160, 1989.

    Article  MATH  Google Scholar 

  18. P. Bar-Yoseph and D. Elata. An efficient L2 Galerkin finite element method for multi-dimensional nonlinear hyperbolic systems. Internat. J. Numer. Methods Engrg., 29: 1229–1245, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Baranger and A. Machmoum. A “natural” norm for the discontinuous finite element characteristic method: the 1-D case. RAIRO Modél. Math. Anal.Numér., 30: 549–574, 1996.

    MathSciNet  MATH  Google Scholar 

  20. J. Baranger and A. Machmoum. Existence of approximate solutions and error bounds for viscoelastic fluid flow: Characteristics method. Comput. Methods Appl. Mech. Engrg., 148: 39–52, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Baranger and D. Sandri. Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds. I. Discontinuous constraints. Numer. Math., 63: 13–27, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Baranger and S. Wardi. Numerical analysis of a FEM for a transient viscoelastic flow. Comput. Methods Appl. Mech. Engrg., 125: 171–185, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Barth. Simplified DG methods for systems of conservation laws with convex extension. In this volume, 1999.

    Google Scholar 

  24. F. Bassi. A high-order discontinuous Galerkin method for compressible turbulent flow. In this volume, 1999.

    Google Scholar 

  25. F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys., 131: 267–279, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Bassi and S. Rebay. High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys., 138: 251–285, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Bassi and S. Rebay. An implicit high-order discontinuous Galerkin method for the steady state compressible Navier-Stokes equations. In K.D. Papailiou, D. Tsahalis, D. Périaux, C. Hirsh, and M. Pandolfi, editors, Computational Fluid Dynamics 98, Proceedings of the Fourth European Computational Fluid Dynamics Conference,volume 2, pages 1227–1233, Athens, Greece, September 5–7 1998. John Wiley and Sons.

    Google Scholar 

  28. F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini. A high-order accurate discontinuous finite element method for inviscid and viscous turbo-machinery flows. In R. Decuypere and G. Dibelius, editors, 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics,pages 99–108, Antwerpen, Belgium, March 5–7 1997. Technologisch Instituut.

    Google Scholar 

  29. C.E. Baumann and J.T. Oden. A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. in press, special issue on Spectral, Spectral Element, and hp Methods in CFD, edited by G.E. Karniadakis, M. Ainsworth and C. Bernardi.

    Google Scholar 

  30. C.E. Baumann and J.T. Oden. A discontinuous hp finite element method for the Navier-Stokes equations. In 10th. International Conference on Finite Element in Fluids, 1998.

    Google Scholar 

  31. C.E. Baumann and J.T. Oden. A discontinuous hp finite element method for the solution of the Euler equation of gas dynamics. In 10th. International Conference on Finite Element in Fluids, 1998.

    Google Scholar 

  32. K.S. Bey and J.T. Oden. A Runge-Kutta discontinuous Galerkin finite element method for high speed flows. In 10th. AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii, June 24–27, 1991.

    Google Scholar 

  33. K.S. Bey and J.T. Oden. hp-version discontinuous Galerkin methods for hyperbolic conservation laws. Comput. Methods Appl. Mech. Engrg., 133: 259–286, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  34. K.S. Bey, J.T. Oden, and A. Patra. A parallel hp-adaptive discontinuous Galerkin method for hyperbolic conservation laws. Appl. Numer. Math., 20: 321–286, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  35. K.S. Bey, A. Patra, and J.T. Oden. hp-version discontinuous Galerkin methods for hyperbolic conservation laws: A parallel strategy. Internat. J. Numer. Methods Engrg., 38: 3889–3908, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Biswas, K.D. Devine, and J. Flaherty. Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math., 14: 255–283, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Bottcher and R. Rannacher. Adaptive error control in solving ordinary differential equations by the discontinuous Galerkin method. Technical report, University of Heidelberg, 1996.

    Google Scholar 

  38. F. Brezzi, D. Marini, P. Pietra, and A. Russo. Discontinuous finite elements for diffusion problems. Numerical Methods for Partial Differential Equations, 1999. submitted.

    Google Scholar 

  39. W. Cai. Mixed high-order basis functions for electromagnetic scattering of curved surfaces. In this volume, 1999.

    Google Scholar 

  40. F.L. Carranza, B. Fang, and R.B. Haber. An adaptive discontinuous Galerkin model for coupled viscoplastic crack growth and chemical transport. In this volume, 1999.

    Google Scholar 

  41. P. Castillo. An optimal error estimate for the local discontinuous Galerkin method. In this volume, 1999.

    Google Scholar 

  42. G. Chavent and B. Cockburn. The local projection P° Pl-discontinuousGalerkin finite element method for scalar conservation laws. RAIRO Modél. Math. Anal.Numér., 23: 565–592, 1989.

    MathSciNet  MATH  Google Scholar 

  43. G. Chavent and J. Jaffré. Mathematical Models and Finite Elements for Reservoir Simulation, volume 17 of Studies in Mathematics and its Applications. North-Holland, Amsterdam, 1986.

    MATH  Google Scholar 

  44. G. Chavent and G. Salzano. A finite element method for the 1D water flooding problem with gravity. J. Comput. Phys., 45: 307–344, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  45. Z. Chen, B. Cockburn, C. Gardner, and J. Jerome. Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode. J. Comput. Phys., 117: 274–280, 1995.

    Article  MATH  Google Scholar 

  46. Z. Chen, B. Cockburn, J. Jerome, and C.-W. Shu. Mixed-RKDG finite element methods for the 2-D hydrodynamic model for semiconductor device simulation. VLSI Design, 3: 145–158, 1995.

    Article  Google Scholar 

  47. B. Cockburn. An introduction to the discontinuous Galerkin method for convection-dominated problems. In A. Quarteroni, editor, Advanced numerical approximation of nonlinear hyperbolic equations, volume 1697 of Lecture Notes in Mathematics; subseries Fondazione C.I.M.E., Firenze, pages 151–268. Springer Verlag, 1998.

    Chapter  Google Scholar 

  48. B. Cockburn. Discontinuous Galerkin methods for convection-dominated problems. In T. Barth and H. Deconink, editors, High-Order Methods for Computational Physics, volume 9 of Lecture Notes in Computational Science and Engineering, pages 69–224. Springer Verlag, 1999.

    Google Scholar 

  49. B. Cockburn. A simple introduction to error estimation for nonnlinear hyperbolic conservation laws. Some ideas, techniques, and promising results. In Proceedings of the 1998 EPSRC Summer School in Numerical Analysis, SSCM, volume 26 of The Graduate Student’s Guide to Numerical Analysis, pages 146. Springer-Verlag, 1999.

    Google Scholar 

  50. B. Cockburn and P.A. Gremaud. Error estimates for finite element methods for nonlinear conservation laws. SIAM J. Numer. Anal., 33: 522–554, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  51. B. Cockburn, S. Hou, and C.W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comp., 54: 545–581, 1990.

    MathSciNet  MATH  Google Scholar 

  52. B. Cockburn, J. Jerome, and C.-W. Shu. The utility of modeling and simulation in determining performance and symmetry properties of semiconductors. In this volume, 1999.

    Google Scholar 

  53. B. Cockburn, S.Y. Lin, and C.W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J. Comput. Phys., 84: 90–113, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  54. B. Cockburn, M. Luskin, C.-W. Shu, and E. Süli. Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. in preparation.

    Google Scholar 

  55. B. Cockburn, M. Luskin, C.-W. Shu, and E. Süli. Postprocessing of Galerkin methods for hyperbolic problems. In this volume, 1999.

    Google Scholar 

  56. B. Cockburn and C.W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework. Math. Comp., 52: 411–435, 1989.

    MathSciNet  MATH  Google Scholar 

  57. B. Cockburn and C.W. Shu. The P1-RKDG method for two-dimensional Euler equations of gas dynamics. Technical Report 91–32, ICASE, 1991.

    Google Scholar 

  58. B. Cockburn and C.W. Shu. The Runge-Kutta local projection P1-discontinuous Galerkin method for scalar conservation laws. RAIRO Modél. Math. Anal.Numér., 25: 337–361, 1991.

    MathSciNet  MATH  Google Scholar 

  59. B. Cockburn and C.W. Shu. The local discontinuous Galerkin finite element method for convection-diffusion systems. SIAM J. Numer. Anal., 35: 2440–2463, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  60. B. Cockburn and C.W. Shu. The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems. J. Comput. Phys., 141: 199–224, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  61. N. Coult. Wavelet-based discontinuous Galerkin methods. In this volume, page pages, 1999.

    Google Scholar 

  62. R. B. Dahlburg and J.M. Picone. Evolution of the Orszag-Tang vortex system in a compressible medium. I. Initial average subsonic flow. Phys. Fluids B, 1 (11): 2153–2171, 1989.

    Article  MathSciNet  Google Scholar 

  63. C.N. Dawson. Godunov-mixed methods for advection-diffusion equations in one space dimension. SIAM J. Numer. Anal., 28: 1282–1309, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  64. C.N. Dawson. Godunov-mixed methods for advection-diffusion equations in multidimensions. SIAM J. Numer. Anal., 30: 1315–1332, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  65. C.N. Dawson. High resolution upwind-mixed finite element methods for advection-diffusion equations with variable time-stepping. Numerical Methods for Partial Differential Equations, 11: 525–538, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  66. C.N. Dawson. Analysis of an upwind-mixed finite element method for nonlinear contiminant transport problems. SIAM J. Numer. Anal., 35: 1709–1724, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  67. C.N. Dawson and V. Aizinger. Upwing-mixed methods for transport equations. Comp. Geo. to appear.

    Google Scholar 

  68. C.N. Dawson, V. Aizinger, and B. Cockburn. The Local Discontinuous Galerkin method for contaminant transport problems. In this volume, 1999.

    Google Scholar 

  69. H.L. deCougny, K.D. Devine, J.E. Flaherty, R.M. Loy, C. Ozturan, and M.S. Shephard. Load balancing for the parallel adaptive solution of partial differential equations. Appl. Numer. Math., 16: 157–182, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  70. M. Delfour, W. Hager, and F. Trochu. Discontinuous Galerkin methods for ordinary differential equations. Math. Comp., 36: 455–473, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Delfour and F. Trochu. Discontinuous Galerkin methods for the approximation of optimal control problems governed by hereditary differential systems. In A. Ruberti, editor, Distributed Parameter Systems: Modelling and Identification, pages 256–271. Springer Verlag, 1978.

    Chapter  Google Scholar 

  72. B. Depres. Discontinuous Galerkin method for the numerical solution of euler equations in axisymmetric geometry. In this volume, 1999.

    Google Scholar 

  73. K.D. Devine and J.E. Flaherty. Parallel adaptive hp-refinement techniques for conservation laws. Appl. Numer. Math., 20: 367–386, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  74. K.D. Devine, J.E. Flaherty, R.M. Loy, and S.R. Wheat. Parallel partitioning strategies for the adaptive solution of conservation laws. In I. Babuska, W.D. Henshaw, J.E. Hoperoft, J.E. Oliger, and T. Tezduyar, editors, Modeling, mesh generation, and adaptive numerical methods for partial differential equations, volume 75, pages 215–242, 1995.

    Google Scholar 

  75. K.D. Devine, J.E. Flaherty, S.R. Wheat, and A.B. Maccabe. A massively parallel adaptive finite element method with dynamic load balancing. In Proceedings Supercomputing’93, pages 2–11, 1993.

    Google Scholar 

  76. M. Dubiner. Spectral methods on triangles and other domains. J. Sci. Comp., 6: 345–390, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  77. K. Eriksson and C. Johnson. Error estimates and automatic time step control for nonlinear parabolic problems. SIAM J. Numer. Anal., 24: 12–23, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  78. K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems I: A linear model problem. SIAM J. Numer. Anal., 28: 43–77, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  79. K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems II: Optimal error estimates in l l 2 and l l . SIAM J. Numer. Anal., 32: 706–740, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  80. K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems IV: A nonlinear model problem. SIAM J. Numer. Anal., 32: 1729 1749, 1995.

    Google Scholar 

  81. K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems V: Long time integration. SIAM J. Numer. Anal., 32: 1750–1762, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  82. K. Eriksson, C. Johnson, and V. Thomée. Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO, Anal. Numér., 19: 611–643, 1985.

    MATH  Google Scholar 

  83. D. Estep. A posteriori error bounds and global error control for approximation of ordinary differential equations. SIAM J. Numer. Anal., 32: 1–48, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  84. D. Estep and D. French. Global error control for the continuous Galerkin finite element method for ordinary differential equations. RAIRO, Anal. Numér., 28: 815–852, 1994.

    MathSciNet  MATH  Google Scholar 

  85. D.J. Estep and R.W. Freund. Using Krylov-subspace iterations in discontinuous Galerkin methods for nonlinear reaction-diffusion systems In this volume,1999.

    Google Scholar 

  86. R. Falk. Analysis of finite element methods for linear hyperbolic problems. In B. Cockburn, G.E. Karniadakis, and C.-W. Shu, editors, First International Symposium on Discontinuous Galerkin Methods, volume 33 of Lecture Notes in Computational Science and Engineering. Springer Verlag, May 1999.

    Google Scholar 

  87. R.S. Falk and G.R. Richter. Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. to appear.

    Google Scholar 

  88. J. Flaherty, R.M. Loy, M.S. Shephard, and J. Teresco. Software for the parallel adaptive solution of conservation laws by a discontinuous Galerkin method. In this volume, 1999.

    Google Scholar 

  89. J.E. Flaherty, R.M. Loy, C. Özturan, M.S. Shephard, B.K. Szymanski, J D Teresco, and L.H. Ziantz. Parallel structures and dynamic load balancing for adaptive finite element computation. Appl. Numer. Math., 26: 241–265, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  90. J.E. Flaherty, R.M. Loy, M.S. Shephard, M.L. Simone, B.K. Szymanski, J.D. Teresco, and L.H. Ziantz. Distributed octree data structures and local refinement method for the parallel solution of three-dimensional conservation laws. In M.W. Bern, J.E. Flaherty, and M. Luskin, editors, Grid Generation and Adaptive Algorithms, volume 113 of The IMA Volumes in Mathematics and its Applications, pages 113–134, Minneapolis, 1999. Institute for Mathematics and its Applications, Springer.

    Chapter  Google Scholar 

  91. J.E. Flaherty, R.M. Loy, M.S. Shephard, B.K. Szymanski, J.D. Teresco, and L.H. Ziantz. Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. J. Parallel and Dist. Comput., 47: 139–152, 1997.

    Article  Google Scholar 

  92. A. Fortin, A. Béliveau, M.C. Heuzey, and A. Lioret. Ten years using discontinuous Galerkin methods for polymer processing problems. In this volume, 1999.

    Google Scholar 

  93. M. Fortin and A. Fortin. New approach for the finite element method simulation of viscoelastic flows. J. Non-Newt. Fluid Mech., 32: 295–310, 1989.

    Article  MATH  Google Scholar 

  94. GAMM Workshop, December 4–6 1985, Nice, France: Numerical simulation of compressible Navier-Stokes equations - external 2D flows around a NACA0012 airfoil. In Ed. INRIA, Centre de Rocquefort, de Rennes et de Sophia-Antipolis, 1986.

    Google Scholar 

  95. I.G. Giannakouros. Spectral element/Flux-Corrected methods for unsteady compressible viscous flows. PhD thesis, Princeton University, Dept. of Mechanical and Aerospace Engineering, 1994.

    Google Scholar 

  96. J. Goodman and R. LeVeque. On the accuracy of stable schemes for 2D scalar conservation laws. Math. Comp., 45: 15–21, 1985.

    MathSciNet  MATH  Google Scholar 

  97. J. Greenstadt. An abridged history of cell discretization. In this volume, 1999.

    Google Scholar 

  98. P.-A. Gremaud. Simulation of granular flows. In this volume, 1999.

    Google Scholar 

  99. D.W. Halt. A compact higher order Euler solver for unstructured grids. PhD thesis, Washington University, 1992.

    Google Scholar 

  100. D.W. Halt and R.K. Agarwall. A compact higher order characteristic-based Euler solver for unstructured grids. In September,1991. AIAA 91–3234.

    Google Scholar 

  101. D.W. Halt and R.K. Agarwall. A compact higher order Euler solver for unstructured grids with curved boundaries. In June,1992. AIAA 92–2696.

    Google Scholar 

  102. P. Houston, C. Schwab, and E. Süli. Stabilized hp-finite element methods for hyperbolic problems SIAM J. Numer. Anal. to appear.

    Google Scholar 

  103. C. Hu, O. Lepsky, and C.-W. Shu. The effect of the lest square procedure for discontinuous Galerkin methods for Hamilton-Jacobi equations. In this volume, 1999.

    Google Scholar 

  104. C. Hu and C.-W. Shu. A discontinuous Galerkin finite element method for Hamilton-Jacobi equations. SIAM J. Sci. Comput. to appear.

    Google Scholar 

  105. T. Hughes, G. Engel, L. Mazzei, and M. Larson. A comparison of discontinuous and continuous Galerkin methods. In this volume, 1999.

    Google Scholar 

  106. Hulbert and Hughes. Space-time finite element methods for second-order hyperbolic equations. Comput. Methods Appl. Mech. Engrg., 84: 327–348, 1990.

    Article  MathSciNet  Google Scholar 

  107. B. L. Hulme. One-step piecewise polynomial Galerkin methods for initial value problems. Math. Comp., 26: 415–426, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  108. B. L. Hulme. One-step piecewise polynomial Galerkin methods for initial value problems. Math. Comp., 26: 881–891, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  109. J. Jaffré, C. Johnson, and A. Szepessy. Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Mathematical Models e.4 Methods in Applied Sciences, 5: 367–386, 1995.

    Article  MATH  Google Scholar 

  110. P. Jamet. Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal., 15: 912–928, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  111. G. Jiang and C.-W. Shu. On cell entropy inequality for discontinuous Galerkin methods. Math. Comp., 62: 531–538, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  112. C. Johnson. Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM J. Numer. Anal., 25: 908–926, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  113. C. Johnson and J. Pitkäranta. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp., 46: 1–26, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  114. G.E. Karniadakis and S.J. Sherwin. Spectral/hp Element Methods in CFD. Oxford University Press, 1999.

    Google Scholar 

  115. G. Karypis and V. Kumar. METIS Unstructured graph partitioning and sparse matrix ordering system version 2.0. Dept. of Computer Science, University of Minnesota, 1995.

    Google Scholar 

  116. D.A. Kopriva, S.L. Woodruff, and M.Y. Hussaini. Discontinuous spectral element approximation of Maxwell’s equations. In this volume, 1999.

    Google Scholar 

  117. P. LeSaint and P.A. Raviart. On a finite element method for solving the neutron transport equation. In C. de Boor, editor, Mathematical aspects of finite elements in partial differential equations, pages 89–145. Academic Press, 1974.

    Google Scholar 

  118. Q. Lin. Full convergence for hyperbolic finite elements. In this volume, 1999.

    Google Scholar 

  119. Q. Lin, N. Yan, and A.-H. Zhou. An optimal error estimate of the discontinuous Galerkin method. Journal of Engineering Mathematics, 13: 101–105, 1996.

    MathSciNet  MATH  Google Scholar 

  120. Q. Lin and A. Zhou. A rectangle test for the first order hyperbolic equation. Proc. Sys. Sri. & Sys., Great Wall Culture Publ. Co., Hong Kong, pages 234–235, 1991.

    Google Scholar 

  121. Q. Lin and A.-H. Zhou. Convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. Acta Math. Sci., 13: 207–210, 1993.

    MathSciNet  MATH  Google Scholar 

  122. J.-G. Liu and C.-W. Shu. Numerical results on a high-order discontinuosu Galerkin method for 2D incompressible flows. In this volume, 1999.

    Google Scholar 

  123. I. Lomtev and G.E. Karniadakis. A discontinuous Galerkin method for the Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 29: 587–603, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  124. I. Lomtev, R.M. Kirby, and G.E. Karniadakis A discontinuous Galerkin ALE method for compressible viscous flow in moving domains. In this volume, 1999.

    Google Scholar 

  125. I. Lomtev, C.W. Quillen, and G.E. Karniadakis. Spectral/hp methods for viscous compressible flows on unstructured 2D meshes. J. Comput. Phys., 144: 325–357, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  126. R. B. Lowrie, P. L. Roe, and B. van Leer. Space-time methods for hyperbolic conservation laws. In Barriers and Challenges in Computational Fluid Dynamics, volume 6 of ICASE/LaRC Interdisciplinary Series in Science and Engineering, pages 79–98. Kluwer, 1998.

    Chapter  Google Scholar 

  127. R.B. Lowrie. Compact higher-order numerical methods for hyperbolic conservation laws. PhD thesis, University of Michigan, 1996.

    Google Scholar 

  128. R.B. Lowrie and J. Morel. Discontinuous Galerkin for hyperbolic systems with stiff relaxation. In this volume, 1999.

    Google Scholar 

  129. R.B. Lowrie, P.L. Roe, and B. van Leer. A space-time discontinuous Galerkin method for the time accurate numerical solution of hyperbolic conservation laws. 1995. AIAA 95–1658.

    Google Scholar 

  130. L. Machiels. A posteriori finite element output bounds of discontinuous Galerkin discretizations of parabolic problems. In this volume, 1999.

    Google Scholar 

  131. Y. Maday and E.M. Ronquist. Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries. In C. Canuto and A. Quarteroni, editors, Spectral and high order methods for partial differential equations (Como, Italy, 1989), pages 91–115. North-Holland, 1990.

    Google Scholar 

  132. X. Makridakis and I. Babuska. On the stability of the discontinuous Galerkin method for the heat equation. SIAM J. Numer. Anal., 34: 389–401, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  133. J.T. Oden, No Babuska, and C.E. Baumann. A discontinuous hp finite element method for diffusion problems. J. Comput. Phys., 146: 491–519, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  134. J.T. Oden and L.C. Wellford, Jr. Discontinuous finite element approximations for the analysis of acceleration waves in eslastic solids. The Mathematics of finite element methods and applications II (J. R. Whiteman, Ed.) Academic Press, London, pages 269–284, 1976.

    Google Scholar 

  135. T.J. Oden and C.E. Baumann. A conservative discontinuous Galerkin method for convection-diffusion and Navier-Stokes problems. In this volume, 1999.

    Google Scholar 

  136. S.A. Orszag and C. Tang. Small-scale structure of two-dimensional magneto-hydrodynamic turbulence. J. Fluid Mech., 90 (1): 129–143, 1979.

    Article  Google Scholar 

  137. S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys., 79: 12–49, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  138. C. Ozturan, H.L. deCougny, M.S. Shephard, and J.E. Flaherty. Parallel adaptive mesh refinement and redistribution on distributed memory computers. Comput. Methods Appl. Mech. Engrg., 119: 123–137, 1994.

    Article  Google Scholar 

  139. J. Peiro, J. Peraire, and K. Morgan Felisa System- Reference Manual. Dept. of Aeronautics, Imperial College, 1994.

    Google Scholar 

  140. T. Peterson. A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal., 28: 133–140, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  141. K.G. Powell. An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Technical Report ICASE Report 94–24, ICASE, NASA Langley, 1994.

    Google Scholar 

  142. M.K. Prasad, J.L. Milovich, A.I. Shestakov, D.S. Kershaw, and J.J. Shaw. 3D unstructures mesh ALE hydrodynamics with the upwind discontinuous Galerkin method. In this volume, 1999.

    Google Scholar 

  143. P. Rasetarinera, M.Y. Hussaini, and F.Q. Hu. Recent results in wave propagation analysis of the discontinuous Galerkin method. In this volume, 1999.

    Google Scholar 

  144. S. Rebay. GMRES for discontinuous Galerkin solution of the compressible Navier-Stokes equations. In this volume, 1999.

    Google Scholar 

  145. W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73–479, Los Alamos Scientific Laboratory, 1973.

    Google Scholar 

  146. G.R. Richter. An optimal-order error estimate for the discontinuous Galerkin method. Math. Comp., 50: 75–88, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  147. G.R. Richter. The discontinuous Galerkin method with diffusion. Math. Comp., 58: 631–643, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  148. G.R. Richter. An explicit finite element method for the wave equation. Applied Numerical Mathematics, 16: 65–80, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  149. G.R. Richter. Explicit finite element methods for linear hyperbolic systems. In this volume, 1999.

    Google Scholar 

  150. B. Rivière and M.F. Wheeler. A discontinuous Galerkin method applied to nonlinear parabolic equations. In this volume, 1999.

    Google Scholar 

  151. Ch. Schwab. p- and hp-finite element methods: Theory and applications in solid and fluid mechanics. Oxford University Press, Oxford, 1998.

    MATH  Google Scholar 

  152. Ch. Schwab. hp-FEM for fluid flow. In T. Barth and H. Deconink, editors, High-Order Methods for Computational Physics, volume 9 of Lecture Notes in Computational Science and Engineering, pages 325–414. Springer Verlag, 1999.

    Google Scholar 

  153. D. Schwanenberg and J. Kongeter. A discontinuous Galerkin method for the shalow water equations with source terms. In this volume, 1999.

    Google Scholar 

  154. S.J. Sherwin. Numerical phase properties analysis of the continuous and discontinuous Galerkin methods. In this volume, 1999.

    Google Scholar 

  155. C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77: 439–471, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  156. C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J. Comput. Phys., 83: 32–78, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  157. N. Sobh, J. Huang, L. Yin, R.B. Haber, and D.A. Tortorelli. A discontinuous Galerkin model for precipitate nucleation and growth in aluminum alloy quench processes. Internat. J. Numer. Methods Engrg. to appear.

    Google Scholar 

  158. T. Strouboulis and J.T. Oden. A posteriori error estimation of finite element approximations in fluid mechanics. Comput. Methods Appl. Mech. Engrg., 78: 201–242, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  159. E. Süli. A posteriori error analysis and global error control for adaptive finite element approximations of hyperbolic problems. In D.F. Griffiths and G.A. Watson, editors, Numerical Analysis 1995, volume 344 of Pitman Lecture Notes in Mathematics Series, pages 196–190, 1996.

    Google Scholar 

  160. E. Süli. A posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems. In D. Kröner, M. Ohlberger, and C. Rhode, editors, An introduction to recent developments in theory and numerics for conservation laws, volume 5 of Lecture Notes in Computational Sciences and Engineering, pages 123–194. Springer, 1999.

    Google Scholar 

  161. E. Siili and P. Houston. Finite element methods for hyperbolic problems: A posteriori error analysis and adaptivity. In I.S. Duff and G.A. Watson, editors, The State of the Art in Numerical Analysis, pages 441–471. Clarendon Press, Oxford, 1997.

    Google Scholar 

  162. E. Süli, Ch. Schwab, and P. Houston. hp -DGFEM for partial differential equations with non-negative characteristic form. In this volume, 1999.

    Google Scholar 

  163. J. Sun, M.D. Smith, R.C. Armstrong, and R. Brown. Finite element method for viscoelastic flows based on the discrete adaptive viscoelastic stress splitting and the discontinuous Galerkin method. Technical report, Dept. Chemical Engineering, MIT, 1998.

    Google Scholar 

  164. H. Swann. The cell discretization algorithm: An overview. In this volume, 1999.

    Google Scholar 

  165. J.D. Teresco, M.W. Beall, J.E. Flaherty, and M.S.Shephard. A hierarchical partition model for adaptive finite element computation. Comput. Methods Appl. Mech. Engrg. submitted.

    Google Scholar 

  166. E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer Verlag, 1997.

    Google Scholar 

  167. H. van der Ven and J.J.W. van der Vegt. Accuracy, resolution, and computational complexity of a discontinuous Galerkin finite element method. In this volume, 1999.

    Google Scholar 

  168. B. van Leer. Towards the ultimate conservation difference scheme, II. J. Comput. Phys., 14: 361–376, 1974.

    Article  Google Scholar 

  169. T. Warburton. Application of the discontinuous Galerkin method to Maxwell’s equations using unstructured polymorphic hp-finite elements. In this volume,1999.

    Google Scholar 

  170. T.C. Warburton. Spectral/hp methods on polymorphic multi-domains: Algorithms and Applications. PhD thesis, Brown University, 1998.

    Google Scholar 

  171. T.C. Warburton and G.E. Karniadakis. A discontinuous Galerkin method for the viscous MHD equations. J. Comput. Phys., 152: 1–34, 1999.

    Article  MathSciNet  Google Scholar 

  172. T.C. Warburton, I. Lomtev, R.M. Kirby, and G.E. Karniadakis. A discontinuous Galerkin method for the Navier-Stokes equations in hybrid grids. In M. Hafez and J.C. Heinrich, editors, 10th. International Conference on Finite Elements in Fluids, Tucson, Arizona, 1998.

    Google Scholar 

  173. L.C. Wellford, Jr. and J.T. Oden. A theory of discontinuous finite element approximations for the analysis of shock waves in nonlinear elastic materials. J. Comput. Phys., 19: 179–210, 1975.

    Article  MathSciNet  Google Scholar 

  174. L.C. Wellford, Jr. and J.T. Oden. A theory of discontinuous finite element approximations for of shock waves in nonlinear elastic solids: Variational theory. Comput. Methods Appl. Mech. Engrg., 8: 1–16, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  175. L.C. Wellford, Jr. and J.T. Oden. A theory of discontinuous finite element approximations for of shock waves in nonlinear elastic solids: Accuracy and convergence. Comput. Methods Appl. Mech. Engrg., 8: 17–36, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  176. M.F. Wheeler. An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal., 15: 152–161, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  177. M. Wierse. A new theoretically motivated higher order upwind scheme on unstructured grids of simplices. Adv. Comput. Math., 7: 303–335, 1997.

    MathSciNet  MATH  Google Scholar 

  178. P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys., 54: 115–173, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  179. L. Yin, A. Acharya, N. Sobh, R.B. Haber, and D.A. Tortorelli. A space-time discontinuous Galerkin method for elastodynamic analysis. In this volume, 1999.

    Google Scholar 

  180. A. Zhou and Q. Lin. Optimal and superconvergence estimates of the finite element method for a scalar hyperbolic equation. Acta Math. Sci., 14: 90–94, 1994.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cockburn, B., Karniadakis, G.E., Shu, CW. (2000). The Development of Discontinuous Galerkin Methods. In: Cockburn, B., Karniadakis, G.E., Shu, CW. (eds) Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59721-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59721-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64098-8

  • Online ISBN: 978-3-642-59721-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics