Advertisement

A Discontinuous Projection Algorithm for Hamilton Jacobi Equations

  • Steeve Augoula
  • Rémi Abgrall
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 11)

Abstract

We present a class of numerical schemes for the numerical integration of first order Hamilton Jacobi equations. The method can be considered as Discontinuous Galerkin scheme, the viscosity solution is directly adapted into the numerical scheme, contrary to other authors.

Keywords

Numerical Scheme Viscosity Solution Triangular Mesh Discontinuous Galerkin Method Hamilton Jacobi Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Harten, B. Engquist, S. Osher and S. Chakravarthy. Uniformly High Order Accurate Essentially Non-oscillatory Scheme,III. J. Comput. Phys., 71, (1987).Google Scholar
  2. 2.
    R. Abgrall. Numerical Discretization of Boundary Conditions for Hamilton-Jacobi Equations. SIAM J. Numer. Anal., submitted. Google Scholar
  3. 3.
    R. Abgrall. Numerical Discretization of First-Order Hamilton-Jacobi Equations on Triangular Meshes. Comm. Pure Appl. Math., pages 1339–1373, (1996).Google Scholar
  4. 4.
    M. Bardi and L.C. Evans. On Hopf’s Formulas for Solutions of Hamilton-Jacobi Equations. Nonlinear Analysis, Methods and Applications, 8 (11): 1373–1381, (1984).MathSciNetzbMATHGoogle Scholar
  5. 5.
    M.G. Crandall and P.L. Lions. Viscosity Solution of Hamilton-Jacobi Equations. Transaction of the American Mathematical Society, 277(1), May (1983).Google Scholar
  6. 6.
    M.G. Crandall and P.L. Lions. Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp., 43:1–49, May (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    M.G. Crandall L.C. Evans and P.L. Lions. Some Properties of Viscosity Solutions of Hamilton-Jacobi equations. Transaction of the American Mathematical Society, 282(2), April (1984).Google Scholar
  8. 8.
    C. Hu and C. W. Shu. A Discontinuous Galerkin scheme for Hamilton-Jacobi Equations. SIAM J. Sci. Comp.,to appear.Google Scholar
  9. 9.
    S. Osher and C.-W. Shu High-Order Essentially Non-oscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal., 28 (4), (1991).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Steeve Augoula
    • 1
  • Rémi Abgrall
    • 1
  1. 1.Mathématiques Appliquées de BordeauxUniversité de Bordeaux ITalence CedexFrance

Personalised recommendations