Free Boundary Problems and their Stabilisation

  • J. R. Ockendon
Conference paper


Free boundary problems (FBPs) are those in which some partial differential equations have to be solved in a region with a boundary whose position is to be found as part of the problem. This article will briefly review some of the theory and folklore concerning such problems and their stabilisation with the aim of highlighting the major open problems that currently confront mathematicians working in the area. It is a subject with which Prof. Hoffmann has been intimately involved over the past three decades and it is a pleasure to acknowledge the contributions he has made to our understanding of problems ranging from the Stefan problem, which created so much excitement in the 1970’s, to FBPs in superconductivity which are currently ”all the rage”. Of course I must also include Prof. Hoffmann’s involvement with the more political applications of ”les frontières libres”.


Free Boundary Free Boundary Problem Stefan Problem Free Boundary Condition Mushy Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ockendon, J.R., Howison, S.D., Lacey, A.A., Movchan, A.B.: Applied Partial Differential Equations.Oxford University Press, 1999Google Scholar
  2. 2.
    Kessler, D.A., Levine, H.: Theory of the Saffman-Taylor Finger Pattern . Phys. Rev. 33 (1986), 2621–2639CrossRefGoogle Scholar
  3. 3.
    Hou, T.Y., Si, H.: Numerical Study of Hele-Shaw Flow with Suction. Prepint, 1998Google Scholar
  4. 4.
    Mineev-Weinstein, M.: Selection of the Saffman-Taylor Finger Width in the Absence of Surface Tension . Phys. Rev. Lett. 80 (1998), 2113CrossRefGoogle Scholar
  5. 5.
    Hohlov, Y.E., Howison, S.D. Huntingford, C., Ockendon, J.R., Lacey, A.A.: A Model for Nonsmooth Free Boundaries in Hele-Shaw Flows . Q.J. Mech. App. Math. 47 (1998), 107–128MathSciNetCrossRefGoogle Scholar
  6. 6.
    Richardson, S.: Some Hele-Shaw Flows with Time-Dependent Free Boundaries . J. Fluid Mech. 102 (1981), 263–278MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Elliott, C.M., Ockendon, J.R.: Weak and Variational Methods for Moving Boundary Problems. Pitman, London, 1982MATHGoogle Scholar
  8. 8.
    Crank, J., Gupta. R.S.: A Moving Boundary Problem Arising in the Diffusion of Oxygen . J. Inst. Math. Applic. 10 (1972), 19–44MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Fasano, A., Primicerio, M., Howison, S.D., Ockendon, J.R.: Some Remarks on the Regularisation of One-Phase Stefan Problems . Quart. App. Math. 48 (1990), 153–168MathSciNetMATHGoogle Scholar
  10. 10.
    Moore, D.W.: The Spontaneous Appearance of a Singularity in an Evolving Vortex Sheet. Proc. R. Soc. London. A 3 6 5 (1979), 105–119Google Scholar
  11. 11.
    Caflisch, R.E., Siegel, M.: Singularity Formation during Rayleigh-Taylor Instability . J. Fluid Mech. 252 (1993), 51–78MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Caxpio, A., Chapman, S.J., Howison, S.D.: Dynamics of Line Singularities . Phil. Trans. R. Soc. London 3 5 5 (1997), 2013–2024Google Scholar
  13. 13.
    Head, A.K., Howison, S.D., Ockendon, J.R., Tighe, S.P.: An Equilibrium Theory of Dislocation Continua . SIAM Review 35 (1993), 580–609MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Hirsch, J.P., Lothe, J.: Theory of Dislocations. Wiley, 1982Google Scholar
  15. 15.
    Garabedian, P.R.: Oblique Water Entry of a Wedge. Commun. Pure Appl. Maths. 6 (1953), 157–165MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Wagner, H.: Uber Stofi- und Gleitvorgange an der Oberflache von Fliissigkeiten . Z. Angew. Math. Mech. 12 (1932), 193–215CrossRefGoogle Scholar
  17. 17.
    Howison, S.D., Ockendon, J.R., Wilson, S.K.: Incompressible Water-Entry Problems at Small Deadrise Angles . J. Fluid. Mech. 222 (1990), 215MathSciNetCrossRefGoogle Scholar
  18. 18.
    Turner, J.R.: The Frictional Unloading Problem in a Linear Elastic Half-Space . J. Inst. Math. Applies. 2 4 (1979), 439–470CrossRefGoogle Scholar
  19. 19.
    Howison, S.D., Morgan. J., Ockendon, J.R.: A Class of Codimension-Two Free Boundary Problems . SIAM Rev. 39 (1996), 187–220MathSciNetGoogle Scholar
  20. 20.
    Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, 1990Google Scholar
  21. 21.
    Barenblatt, G.I.: The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Adv. Appl. Mech. 7 (1962), 55–129MathSciNetCrossRefGoogle Scholar
  22. 22.
    Friedman, A., Bei Hu Velazquez, J.J.: Propagation of Cracks in Elastic Media. Preprint, 1999Google Scholar
  23. 23.
    Richardson, G., Stoth, B.: Ill-Posedness of the Mean-Field Model of Superconducting Vortices and the Regularisation thereof. Euro. J. Appl. Math., (2000), to appearGoogle Scholar
  24. 24.
    Rogers, J.C.W., Szymezak, W.G.: Computation of Violent Surface Motions: Comparisons with Theory and Experiment . Phil. Trans. R. Soc. London. A355(1997), 649–664Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • J. R. Ockendon
    • 1
  1. 1.Oxford Centre for Industrial and Applied MathematicsUniversity of OxfordOxfordUK

Personalised recommendations