Skip to main content

Critical Finite-Size Scaling with Constraints: Fisher Renormalization ReXIsited

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics XII

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 85))

Abstract

The influence of a thermodynamic constraint on the critical finite-size scaling behavior of three-dimensional Ising and XY models is analyzed by Monte-Carlo simulations. Within the Ising universality class constraints lead to Fisher renormalized critical exponents, which modify the asymptotic form of the scaling arguments of the universal finite-size scaling functions. Within the XY universality class constraints lead to very slowly decaying corrections inside the scaling arguments, which are governed by the specific heat exponent a. If the modification of the scaling arguments is properly taken into account in the scaling analysis of the data, finite-size scaling functions are obtained, which are independent of the constraint as anticipated by analytic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amit D. J. (1978) Field Theory, the Renormalization Group, and Critical Phe-nomena, McGraw-Hill, New York.

    Google Scholar 

  2. Parisi G. (1988) Statistical Field Theory, Addison-Wesley, Wokingham.

    MATH  Google Scholar 

  3. Fisher M. E. (1968) Phys. Rev. 176, 257.

    Article  ADS  Google Scholar 

  4. Le Guillou J. C., Zinn-Justin J. (1985) J. Phys. (France) Lett. 46, L137; Guida R., Zinn-Justin J. (1998) J. Phys. A 31, 8103.

    Article  MathSciNet  ADS  Google Scholar 

  5. Lipa J. A., Swanson D. R., Nissen J. A., Chui T. C. P., Israelsson U. E. (1996) Phys, Rev. Lett. 76, 944.

    Article  ADS  Google Scholar 

  6. Fisher M. E.(1971) in: Green M. S. (Ed.) Proceedings of the 1970 Enrico Fermi School of Physics, Varenna, Italy, Course No. LI Academic, New, York, p.l; Fisher M. E., Barber M. N. (1972) Phys. Rev. Lett. 28, 1516.

    Google Scholar 

  7. Barber M. N. (1983) in: Domb C, Lebowitz J. L. (Eds.) Phase Transitions and Critical Phenomena, Iol. 8, Academic, New York, p. 145; Privman I. (1990) in: Privman I. (Ed.) Finite Size Scaling and Numerical Simulation of Statistical Systems, World Scientific, Singapore.

    Google Scholar 

  8. Dohm I. (1998) priVAte communication.

    Google Scholar 

  9. Wolff U. (1989) Phys. Rev. Lett. 62, 361.

    Article  ADS  Google Scholar 

  10. Chen K., Landau D. P. (1994) Phys. Rev. B 49, 3266.

    Article  Google Scholar 

  11. Hasenbusch M. (1990) Nucl. Phys. B333, 581.

    Article  ADS  Google Scholar 

  12. Ferrenberg A. M., Landau D. P., Wong Y. J. (1992) Phys. Rev. Lett. 69, 3382; Shchur L. N., Blöthe H. W. J. (1997) Phys. Rev. E 55, R4905.

    Google Scholar 

  13. Ferrenberg A. M., Landau D. P. unpublished.

    Google Scholar 

  14. Chen K., Ferrenberg A. M., Landau D. P. (1993) Phys. Rev. B 48, 3249.

    Article  Google Scholar 

  15. Blöte H. W., Luijten E., Heringa J. R. (1995) J. Phys. A 28, 6289.

    Article  ADS  MATH  Google Scholar 

  16. Esser A., Dohm I., Chen X. S. (1995) Physica A 222, 355; Chen X. S., Dohm I., Talapov A. L. (1996) Physica A 232, 375.

    Article  ADS  Google Scholar 

  17. Gottlob A. P., Hasenbusch M. (1993) Physica A 201, 593.

    Article  ADS  Google Scholar 

  18. Chen X. S., Dohm I., Esser, A. (1995) J. Phys. I France 5, 205; Schultka N., Manousakis E. (1995) Phys. Rev. B 52, 7528.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this paper

Cite this paper

Krech, M. (2000). Critical Finite-Size Scaling with Constraints: Fisher Renormalization ReXIsited. In: Landau, D.P., Lewis, S.P., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics XII. Springer Proceedings in Physics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59689-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59689-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64086-5

  • Online ISBN: 978-3-642-59689-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics