Quantum Simulations of Strongly Correlated Electron Systems

  • S. Zhang
  • E. C. Allman
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 85)


We review recent progress in developing new quantum Monte Carlo methods for simulating strongly correlated electron systems. We then present a summary of our on-going studies of the Hubbard model with these methods, including the ground-state constrained path Monte Carlo method and a new finite-temperature method. These methods make possible simulations at large system sizes and low temperatures. They eliminate the exponential decay of ’sign’ with system size and inverse temperature that is characteristic of the fermion sign problem in standard quantum Monte Carlo. The new methods, which are approximate, yielded accurate results in a variety of benchmarks. On the Hubbard model, our calculations haIe found no indication of long-range order in electron pairing correlations. An improved band structure in the model, deriIed from first-principles calculations on YBa2Cu307, does not appear to enhance pairing.


Pairing Correlation Hubbard Model Exact Diagonalization Quantum Simulation Quantum Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. E. Schmidt and M. H. Kalos, in Applications of the Monte Carlo Method in Statistical Physics, edited by K. Binder (Springer Verlag, Heidelberg, 1984). Google Scholar
  2. 2.
    E. Y. Loh Jr., J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino, and R. L. Sugar, Phys. Rev. B 41, 9301 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    See, e.g., E. Dagotto, Rev. Mod. Phys. 66, 763 (1994) and references theRevn.Google Scholar
  4. 4.
    R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    G. Sugiyama and S.E. Koonin, Ann. Phys. (NY) 168, 1 (1986 S. Zhang and E. C. Allrnan.Google Scholar
  6. 6.
    S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh Jr., J. E. Gubernatis, R. T. Scalettar, Phys. Rev. B 40, 506 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    D. J. Scalapino, in High Temperature Superconducting Proceedings, ed. by K. S. Bedell, D. Coffey, D. E. Meitzer, D. Pines, and J. R. Schrieffer (Addison Wesley, 1990), p314.Google Scholar
  8. 8.
    Shiwei Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. Lett. 74, 3652 (1995); Phys. Rev. B 55, 7464 (1997).Google Scholar
  9. 9.
    Shiwei Zhang, in Quantum Monte Carlo Methods in Physics and Chemistry, Ed. M. P. Nightingale and C. J. Umrigar, NATO ASI Series (Kluwer Academic Publishers, 1999).Google Scholar
  10. 10.
    Shiwei Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. Lett. 78, 4486 (1997). Google Scholar
  11. 11.
    E. C. Allman and Shiwei Zhang, to be published. Google Scholar
  12. 12.
    J. Bonca and J. E. Gubernatis, Phys. Rev. B 58, 6992 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    M. Guerrero, J.E. Gubernatis, and Shiwei Zhang, Phys. Rev. B 57, 11980 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    Otto F. Sankey, A. A. DemkoI, and T. Lenosky, Phys. Rev. B 57, 15129 (1998). Google Scholar
  15. 15.
    S. Mazumdar, S. Ramasesha, R.T. Clay, D.K. Campbell, Phys. Rev. Lett. 82, 1522 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    Shiwei Zhang, preprint (submitted to Phys. Rev. Lett.). Google Scholar
  17. 17.
    J. Hubbard, Phys. Rev. Lett. 3, 77 (1959).ADSCrossRefGoogle Scholar
  18. 18.
    J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    D. M. Ceperley, Phys. Rev. Lett. 69, 331 (1992); in Simulation in Condensed Matter Physics and Chemistry, Ed. by K. Binder and G. Ciccotti (1996). Google Scholar
  20. 20.
    M. H. Kalos, D. LeIesque, and L. Ierlet, Phys. Rev. A9, 2178 (1974) D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer-Verlag, Heidelberg, 1979). Google Scholar
  21. 21.
    J. B. Anderson, J. Chem. Phys. 63, 1499 (1975); 65, 4122 (1976). Google Scholar
  22. 22.
    J. W. Moskowitz, K. E. Schmidt, M. A. Lee, and M. H. Kalos, J. Chem. Phys. 77, 349 (1982); P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J. Chem. Phys. 77 5593 (1982). Google Scholar
  23. 23.
    N. Furukawa and M. Imada, J. Phys. Soc. Jpn. 61, 3331 (1992).ADSCrossRefGoogle Scholar
  24. 24.
    See, e.g., P. W. Anderson and J. R. Schrieffer, “The give-and-take between two solid-state therists offers insight deIeloping a new theory”, Physics Today June, 55 (1991).Google Scholar
  25. 25.
    See, for example, D. J. Scalapino, Phys. Reports 250, 329 (1995), and references theRevn.Google Scholar
  26. 26.
    For example, see A. P. Kampf, Phys. Reports 249, 219 (1994). Google Scholar
  27. 27.
    A. Moreo and D. J. Scalapino, Phys. Rev. B 43, 8211 (1991); A. Moreo, Phys. Rev. B 45, 5059 (1992).Google Scholar
  28. 28.
    R. T. Scalettar, priVAte communication. Google Scholar
  29. 29.
    A. Parola, S. Sorella, S. Baroni, R. Car, M. Parrinello, and E. Tosatti, Physica C 162–164, 771 (1989); A. Parola, S. Sorella, M. Parrinello, and E. Tosatti, Phys. Rev. B 43, 6190 (1991); G. Fano, F. Ortolani, and A. Parola, Phys. Rev. B 42, 6877 (1990). Google Scholar
  30. 30.
    O. K. Andersen, A. I. Liechtenstein, O. Jepsen, and F. Paulsen, J. Phys. Chem. Solids 56, 1573 (1995).ADSCrossRefGoogle Scholar
  31. 31.
    D. J. Scalapino, in PerspectiIes in Many-Body Physics, edited by R. A. BroglVA, J. R. Schrieffer, and P. F. Bortignon (North-Holland, Amsterdam, 1994), pg. 95.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • S. Zhang
    • 1
  • E. C. Allman
    • 1
  1. 1.Department of Physics and Deparment of Applied ScienceCollege of WillVAm and MaryWillamsburgUSA

Personalised recommendations