Skip to main content

Beyond Wavelets: Exactness Theorems for Physical Calculations

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics XII

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 85))

  • 161 Accesses

Abstract

This paper develops the use of wavelets as a basis set for the solution of physical problems exhibiting behavior over wide-ranges in length scale. In a simple dVAgrammatic language, this article reviews both the mathematical underpinnings of wavelet theory and the algorithms behind the fast wavelet transform. This article underscores the fact that traditional wavelet bases are fundamentally ill-suited for physical calculations and shows how to go beyond these limitations by the introduction of the new concept of semicardinality, which allows basic physical couplings to be computed exactly from Iery sparse information, thereby oIercoming the limitations of traditional wavelet bases in the treatment of physical problems. The paper then explores the convergence rate of conjugate gradient solution of the Poisson equation in both semicardinal and lifted wavelet bases and shows the first solution of the Kohn-Sham equations using a novel varVAtional principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:Al 133, 1965.

    Google Scholar 

  2. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864, 1964.

    Article  MathSciNet  ADS  Google Scholar 

  3. M.C. Payne, M.P. Teter, D.C. Allan, T.A. ArVAs, and J.D. Joannopoulos. Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64:1045, 1992.

    Article  ADS  Google Scholar 

  4. T.A. ArVAs, K.J. Cho, Pui Lam, and M.P. Teter. wavelet transform representation of the electronic structure of materVAls. In RajiI K. KalVA and Priya VAshishta, editors, Proceeedings of the 94 Mardi Gras Conference: Toward Ter-aflop Computing and New Grand Challenge Applications, page 23, Commack New York, 1995. NoVA Science Publishers.

    Google Scholar 

  5. R.A. Lippert, T.A. ArVAs, and A. Edelman. Multiscale computation with interpolating wavelets. J. Comput. Phys., 140:278, 1998.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. T.A. ArVAs. Multiresolution analysis of electronic structure: semicardinal and orthogonal wavelet bases. Rev. Mod. Phys., 71:267, 1999.

    Article  ADS  Google Scholar 

  7. C.K. Chui. An Introduction to wavelets. Academic Press, Boston, 1992.

    MATH  Google Scholar 

  8. C.J. Tymczak and XVAo-Qvan Wang. Orthonormal wavelet bases for quantum molecular dynamics. Phys. Rev. Lett., 78:3654, 1997.

    Google Scholar 

  9. W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harm. Anal., 3:186, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Goedecker and O.I. Ivanov. Linear scaling solution of the coulomb problem using wavelets. Solid State Commun., 105:665, 1998.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this paper

Cite this paper

ArVAs, T.A., Engeness, T.D. (2000). Beyond Wavelets: Exactness Theorems for Physical Calculations. In: Landau, D.P., Lewis, S.P., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics XII. Springer Proceedings in Physics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59689-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59689-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64086-5

  • Online ISBN: 978-3-642-59689-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics