Advertisement

Genome Paralogy: A New Perspective on the Organization and Origin of the Major Histocompatibility Complex

  • M. Kasahara
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 248)

Abstract

The coordinated international project to sequence the entire human major histocompatibility complex (MHC) is approaching its end. We will probably see the complete nucleotide sequence of the mouse MHC in the near future. Thus, for the time being, the MHC is likely to remain one of the best characterized genetic regions in the mammalian genome.

Keywords

Adaptive Immune System Cartilaginous Fish Chromosomal Duplication Paralogous Copy Paralogous Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amores A, Force A, Yan Y-L, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang Y-L, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282: 1711–1714PubMedCrossRefGoogle Scholar
  2. Aparicio S (1998) Exploding vertebrate genomes. Nature Genet 18: 301–303PubMedCrossRefGoogle Scholar
  3. Bingulac-Popovic J, Figueroa F, Sato A, Talbot WS, Johnson SL, Gates M, Postlethwait JH, Klein J (1997) Mapping of Mhc class I and class II regions to different linkage groups in the zebrafish, Danio rerio. Immunogenetics 46: 129–134PubMedCrossRefGoogle Scholar
  4. Campbell D, Trowsdale J (1997) A map of the human major histocompatibility complex. Immunol Today 18: 43Google Scholar
  5. Cantrell D (1998) Lymphocyte signalling: A coordinating role for Vav? Curr Biol 8: R535 - R538PubMedCrossRefGoogle Scholar
  6. Du Pasquier L, Flajnik MF (1998) Origin and evolution of the vertebrate immune system. In: Paul WE (ed) Fundamental Immunology. Lippincott Williams & Wilkins, Philadelphia, PA, pp 605–650Google Scholar
  7. Eichler EE (1998) Masquerading repeats: paralogous pitfalls of the human genome. Genome Res 8: 758–762PubMedGoogle Scholar
  8. Endo T, Imanishi T, Gojobori T, Inoko H (1997) Evolutionary significance of intra-genome duplications on human chromosomes. Gene 205: 19–27PubMedCrossRefGoogle Scholar
  9. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo RJ, Ellis MC, Fullan A, Hinton LM, Jones NL. Kimmel BE, Kronmal GS, Lauer P, Lee VK, Loeb DB, Mapa FA, McClelland E, Meyer NC, Mintier GA, Moeller N, Moore T, Morikang E, Prass CE, Quintana. L, Starnes SM, Schatzman RC, Brunke KJ, Drayna DT, Risch NJ, Bacon BR, Wolff RK (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genet 13: 399–408Google Scholar
  10. Finnerty JR, Martindale MQ (1998) The evolution of the Hox cluster: insights from outgroups. Curr Opin Genet Dev 8: 681–687PubMedCrossRefGoogle Scholar
  11. Fischer KID, Zmuldzinas A, Gardner S, Barbacid M, Bernstein A, Guidos C (1995) Defective T-cell receptor signalling and positive selection of Vav-deficient CD4 + CD8 + thymocytes. Nature 374: 474–477PubMedCrossRefGoogle Scholar
  12. Fischer KID, Zmuldzinas A, Gardner S, Barbacid M, Bernstein A, Guidos C (1995) Defective T-cell receptor signalling and positive selection of Vav-deficient CD4 + CD8 + thymocytes. Nature 374: 474–477PubMedCrossRefGoogle Scholar
  13. Graser R, Vincek V, Takami K, Klein J (1998) Analysis of zebrafish Mhc using BAC clones. Immunogenetics 47: 318–325PubMedCrossRefGoogle Scholar
  14. Hashimoto K, Hirai M, Kurosawa Y (1995) A gene outside the human MHC related to classical HLA class I genes. Science 269: 693–695PubMedCrossRefGoogle Scholar
  15. Holland PWH, Garcia-Fernandez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development. Development 1994 Suppl.: 125–133Google Scholar
  16. Hughes AL (1998) Phylogenetic tests of the hypothesis of block duplication of homologous genes on human chromosomes. 6:9, and 1. Mol Biol Evol 15: 854–870PubMedGoogle Scholar
  17. Kandil E, Namikawa C, Nonaka M, Greenberg AS, Flajnik MF, Ishibashi T, Kasahara M (1996) Isolation of low molecular mass polypeptide complementary DNA clones from primitive vertebrates: Implications for the origin of MHC class I-restricted antigen presentation. J Immunol 156: 4245–4253Google Scholar
  18. Kasahara M (1997) New insights into the genomic organization and origin of the major histocompatibility complex: Role of chromosomal (genome) duplication in the emergence of the adaptive immune system. Hereditas 127: 59–65PubMedCrossRefGoogle Scholar
  19. Kasahara M (1998) What do the paralogous regions in the genome tell us about the origin of the adaptive immune system? Immunol Rev 166: 159–175PubMedCrossRefGoogle Scholar
  20. Kasahara M (1999) The chromosomal duplication model of the major histocompatibility complex. Immunol Rev 167: 17–32PubMedCrossRefGoogle Scholar
  21. Kasahara M, Flajnik MF, Ishibashi T, Natori T (1995) Evolution of the major histocompatibility complex: a current overview. Transplant Immunol 3: 1–20CrossRefGoogle Scholar
  22. Kasahara M, Hayashi M, Tanaka K, Inoko H, Sugaya K, Ikemura T, Ishibashi T (1996) Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex. Proc Natl Acad Sci USA 93: 9096–9101PubMedCrossRefGoogle Scholar
  23. Kasahara M, Nakaya J, Satta Y, Takahata N (1997) Chromosomal duplication and the emergence of the adaptive immune system. Trends Genet 13: 90–92PubMedCrossRefGoogle Scholar
  24. Katsanis N, Fitzgibbon J, Fischer EMC (1996) Paralogy mapping: Identification of a region in the human MHC triplicated onto human chromosomes I and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 35: 101–108PubMedCrossRefGoogle Scholar
  25. Kaufman J, Salomonsen J (1997) The “Minimal Essential MHC” revisited: Both peptide-binding and cell surface expression level of MHC molecules are polymorphisms selected by pathogens in chickens. Hereditas 127: 67–73Google Scholar
  26. Kaufman J, Volk H, Wallny H-J (1995) A “minimal essential MHC” and an “unrecognized MHC”: two extremes in selection for polymorphism. Immunol Rev 143: 63–88PubMedCrossRefGoogle Scholar
  27. Klein J, Sato A (1998) Birth of the major histocompatibility complex. Scand J Immunol 47: 199–209PubMedCrossRefGoogle Scholar
  28. Litman GW (1996) Sharks and the origins of vertebrate immunity. Sci Amer 275: 47–51CrossRefGoogle Scholar
  29. Lundin LG (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16: 1–19PubMedCrossRefGoogle Scholar
  30. Martin LH, Calabi F, Milstein C (1986) Isolation of CD1 genes: A family of major histocompatibility complex-related differentiation antigens. Proc Natl Acad Sci USA 83: 9154–9158PubMedCrossRefGoogle Scholar
  31. Matsunaga T, Rahman A (1998) What brought the adaptive immune system to vertebrates? — The jaw hypothesis and the seahorse. Immunol Rev 166: 177–186PubMedCrossRefGoogle Scholar
  32. Miller MM, Goto RM, Taylor RL Jr, Zoorob R, Auffray C, Briles RW, Briles WE, Bloom SE (1996) Assignment of Rfp-Y to the chicken major histocompatibility complex/NOR microchromosome and evidence for high-frequency recombination associated with the nuclear organizer region. Proc Natl Acad Sci USA 93: 3958–3962PubMedCrossRefGoogle Scholar
  33. Nadeau JH, Kosowsky M (1991) Mouse map of paralogous genes. Mamm Genome 1: 5433–5460Google Scholar
  34. Namikawa C, Salter-Cid L, Flajnik MF, Kato Y, Nonaka M, Sasaki M (1995) Isolation of Xenopus LMP-7 homologues. Striking allelic diversity and linkage to MHC. J Immunol 155: 1964–1971PubMedGoogle Scholar
  35. Nonaka M, Namikawa C, Kato Y, Sasaki M, Salter-Cid L, Flajnik MF (1997a) Major histocompatibility complex gene mapping in the amphibian Xenopus implies a primordial organization. Proc Natl Acad Sci USA 94: 5789–5791PubMedCrossRefGoogle Scholar
  36. Nonaka M, Namikawa-Yamada C, Sasaki M, Salter-Cid L, Flajnik MF (1997b) Evolution of proteasome subunits S and LMP2: complementary DNA cloning and linkage analysis with MHC in lower vertebrates. J Immunol 159: 734–740PubMedGoogle Scholar
  37. Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New YorkGoogle Scholar
  38. Robey E (1997) Notch in vertebrates. Curr Opin Genet Dev 7: 551–557PubMedCrossRefGoogle Scholar
  39. Ruddle FH, Bentley KL, Murtha MT, Risch N (1994) Gene loss and gain in the evolution of the vertebrates. Development 1994 Suppl.: 155–161Google Scholar
  40. Salter-Cid L, Du Pasquier L, Flajnik MF (1996) RING3 is linked to the Xenopus major histocompatibility complex. Immunogenetics 44: 397–399Google Scholar
  41. Schluter SF, Bernstein RM, Marchalonis JJ (1997) Molecular origins and evolution of immunoglobulin heavy-chain genes of jawed vertebrates. Immunol Today 18: 543–549PubMedCrossRefGoogle Scholar
  42. Sharman AC, Holland PWH (1996) Conservation, duplication, and divergence of developmental genes during chordate evolution. Netherlands J Zool 46: 47–67CrossRefGoogle Scholar
  43. Sidow A (1996) Gen(om)e duplications in the evolution of early vertebrates. Curr Opin Genet Dev 6: 715–722PubMedCrossRefGoogle Scholar
  44. Skrabanek L, Wolfe KH (1998) Eukaryote genome duplication — where’s evidence? Curr Opin Genet Dev 8: 694–700PubMedCrossRefGoogle Scholar
  45. Spring J (1997) Vertebrate evolution by interspecific hybridization — are we polyploid? FEBS Lett 400: 2–8PubMedCrossRefGoogle Scholar
  46. Sunyer JO, Zarkadis IK, Lambris JD (1998) Complement diversity: a mechanism for generating immune diversity? Immunol Today 19: 519–523PubMedCrossRefGoogle Scholar
  47. Takami K, Zaleska-Rutczynska Z, Figueroa F, Klein J (1997) Linkage of LMP, TAP, and RING3 with MHC class I rather than class II genes in the zebrafish. J Immunol 159: 6052–6060PubMedGoogle Scholar
  48. Tanaka K, Kasahara M (1998) The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-y-inducible proteasome activator PA28. Immunol Rev 163: 161–176PubMedCrossRefGoogle Scholar
  49. Tarakhovsky A, Turner M, Schaal S, Mee PJ, Duddy LP, Rajewsky K, Tybulewicz VL (1995) Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vay. Nature 374: 467–470PubMedCrossRefGoogle Scholar
  50. Thompson CB (1995) New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3: 531–539PubMedCrossRefGoogle Scholar
  51. Ting JP-Y, Baldwin AS (1993) Regulation of MHC gene expression. Curr Opin Immunol 5: 8–16PubMedCrossRefGoogle Scholar
  52. Trachtulec Z, Hamvas RMJ, Forejt J, Lehrach HR, Vincek V, Klein J (1997) Linkage of TATA-binding protein and proteasome subunit C5 genes in mice and humans reveals synteny conserved between mammals and invertebrates. Genomics 44: 1–7PubMedCrossRefGoogle Scholar
  53. Trowsdale J (1995) “Both man & bird & beast”: Comparative organization of MHC genes. Immunogenetics 41:1–17Google Scholar
  54. Ueyama H, Han-Xiang D, Ohkubo I (1993) Molecular cloning and chromosomal assignment of the gene for human Zn-a2-glycoprotein. Biochemistry 32: 12968–12976PubMedCrossRefGoogle Scholar
  55. Zhang R, Alt FW, Davidson L, Orkin SH, Swat W (1995) Defective signalling through T- and B-cell antigen receptors in lymphoid cells lacking the Vav proto-oncogene. Nature 374: 470–473PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • M. Kasahara
    • 1
  1. 1.Department of Biosystems Science, School of Advanced SciencesGraduate University for Advanced Studies, and Core Research for Evolutionary Science and Technology, JSTHayamaJapan

Personalised recommendations