Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 248))

Abstract

It has long been known that insects are particularly resistant to bacteria. Early workers in the late 19th century attributed this resistance to phagocytosis and to encapsulation by hemocytes (Kowalevsky 1887; Cuénot 1896). Around 1920, a number of independent studies established that insects could be protected against the injection of lethal doses of bacteria by the prior administration of low doses (Metalnikow 1920; Paillot 1920; Glaser 1918) and that this induced protection was correlated to the appearance of a potent antibacterial activity in the cell-free hemolymph. These studies, and most of the subsequent investigations in the field of insect immunity, were performed on large-sized insect species. It was only in 1972 that the problem of the inducible antibacterial activity was addressed in the small-sized Drosophila. Studies by Boman and associates (Boman et al. 1972) demonstrated that in Drosophila, as in other larger insect species, a primary infection can induce a protection against a secondary infection which otherwise would be lethal. In spite of the obvious interest of Drosophila as a model system, Boman and associates turned to the large pupae of the Cecropia moth for the first isolation of induced antibacterial molecules (cecropins; Steiner et al. 1981; attacins; Hultmark et al. 1983). Other groups subsequently worked on large-sized fly species, such as Sarcophaga peregrina (Okada and Natori 1985; Ando and Natori 1988; Matsuyama and Natori 1988) and Phormia terranovae (Dimarcq et al. 1988; Lambert et al. 1989). In the mid-eighties, two independent studies confirmed that Drosophila responds to the inoculation of bacteria within a few hours by the de novo synthesis of several peptides/polypeptides, some of which were presumed to be homologous to cecropins and attacins (Robertson and Postlethwait 1986; Flyg et al. 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson KV, Nusslein-Volhard C (1986) Dorsal-group genes of Drosophila. In: Gametogenesis and the early embryo. Ed J Gall ( New York: Alan R. Liss ) pp 177–194

    Google Scholar 

  • Ando K, Natori S (1988) Molecular cloning, sequencing, and characterization of cDNA for SarcotoxinIIA, an inducible antibacterial protein of Sarcophaga peregrina (flesh fly). Biochem 27: 1715–1721

    Article  CAS  Google Scholar 

  • Arch RH, Gedrich RW, Thompson CB (1998) Tumor necrosis factor receptor-associated factors ( TRAFs) - a family of adaptor proteins that regulates life and death. Genes & Devel 12: 2821–2830

    Article  CAS  Google Scholar 

  • Ashida M, Brey P (1997) Recent advances in research on the insect prophenoloxidase cascade. In: Molecular Mechanisms of Immune Response in insects. (Ed) Brey PT, Hultmark D (Chapman & Hall, London) pp 135–172

    Google Scholar 

  • Asling B, Dushay MS, Hultmark D (1995) Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem Mol Biol 25: 511–518

    Article  PubMed  CAS  Google Scholar 

  • Belvin MP, Jin Y, Anderson KV (1995) Cactus protein degradation mediates Drosophila dorsal-ventral signaling. Genes Dev 9: 783–793

    Article  PubMed  CAS  Google Scholar 

  • Belvin MP, Anderson KV (1996) A conserved signaling pathway: the Drosophila Toll-Dorsal pathway. Annu Rev Cell Dev Biol 12: 393–416

    Article  PubMed  CAS  Google Scholar 

  • Bergner A, Oganessyan V, Muta T, Iwanaga S, Typke D, Huber R, Bode W (1996) Crystal structure of coagulogen, the clotting protein from horseshoe crab: a structural homologue of nerve growth factor. EMBO J 15: 6789–6797

    PubMed  Google Scholar 

  • Boman HG, Nilsson I, Rasmuson B (1972) Inducible antibacterial defence system in Drosophila. Nature 237: 232–235

    Article  PubMed  CAS  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Ann Rev Immunol 13: 61–92

    Article  CAS  Google Scholar 

  • Braun A, Lemaitre B, Lanot R, Zachary D, Meister M (1997) Drosophila immunity: analysis of larval hemocytes by P-element-mediated enhancer trap. Genetics 147: 623–634

    Google Scholar 

  • Braun A, Hoffmann JA, Meister M (1998) Analysis of the Drosophila host defense in domino mutant larvae, which are devoid of hemocytes. Proc Natl Acad Sci USA 95: 14337–14342

    Article  PubMed  CAS  Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108: 1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Brown K, Park S, Kanno T, Franzoso G, Siebenlist U (1993) Mutual regulation of the transcriptional activator NF-KB and its inhibitor, IKB-a Proc Natl Acad Sci USA 90: 2532–2536

    Article  CAS  Google Scholar 

  • Bulet P, Dimarcq JL, Hetru C. Lagueux M, Charlet M, Hégy G, Van Dorsselaer A, Hoffmann JA (1993) A novel inducible antibacterial peptide of Drosophila carries an 0-glycosylated substitution. J Biol Chem 268: 14893–14897

    PubMed  CAS  Google Scholar 

  • Bulet P, Urge L, Ohresser S, Hetru C, Otvos L Jr (1996) Enlarged scale chemical synthesis and range of activity of drosocin, an 0-glycosylated antibacterial peptide of Drosophila. Eur J Biochem 238: 64–69

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Henzel WJ, Gao X (1996) IRAK: a kinase associated with the Interleukin-1 receptor. Science 271: 1128–1131

    Article  PubMed  CAS  Google Scholar 

  • Charlet M, Lagueux M, Reichhart JM, Hoffmann D, Braun A. Meister M (1996) Cloning of the gene encoding the antibacterial peptide drosocin involved in Drosophila immunity. Expression studies during the immune response. Eur J Biochem 241: 699–706

    Article  PubMed  CAS  Google Scholar 

  • Chosa N, Fukumitsu T, Fujimoto K, Ohnishi E (1997) Activation of prophenoloxidase Al by an activating enzyme in Drosophila melanogaster. Insect Biochem Molec Biol 27: 61–68

    Article  CAS  Google Scholar 

  • Christensen B, Fink J, Merrifield RB, Mauzerall D (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci USA 85: 5072–5076

    Article  PubMed  CAS  Google Scholar 

  • Cociancich S, Ghazi A, Hetru C, Hoffmann JA, Letellier L (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus tweets. J Biol Chem 268: 19239–19245

    PubMed  CAS  Google Scholar 

  • Cornet B, Bonmatin JM, Hetru C, Hoffmann JA, Ptak M Voyelle F (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3: 435–448

    Article  PubMed  CAS  Google Scholar 

  • Cuénot L (1896) Etudes physiologiques sur les orthoptères. Arch Biöl Liège 14:293–341

    Google Scholar 

  • Darnell JE (1997) Stats and gène regulation. Science 277: 1630–1635

    Article  PubMed  CAS  Google Scholar 

  • DeLotto Y, DeLotto R (1998) Proteolytic processing of the Drosophila Spätzle protein by Easter generates a dimeric NGF-like molecule with ventralising activity. Mechanisms of Devel 72: 141–148

    Article  CAS  Google Scholar 

  • Dimarcq JL, Hoffmann D, Meister M. Bulet P, Lanot R, Reichhart JM, Hoffmann JA (1994) Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur J Biochem 221: 201–209

    Article  PubMed  CAS  Google Scholar 

  • Dushay M, Asling B, Hultmark D (1996) Origins of immunity: relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc Natl Acad Sci USA 93: 10343–10347

    Article  PubMed  CAS  Google Scholar 

  • Eldon E, Kooyer S, D’Evelyn D, Duman M, Lawinger P, Botas J, Bellen H (1994) The Drosophila 18- wheeler is required for morphogenesis and has striking similarities to Toll. Development 120: 885–899

    PubMed  CAS  Google Scholar 

  • Engström P. Carlsson A. Engström A, Tao ZJ, Bennich H (1984) The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coll. EMBO J 3: 3347–3351

    PubMed  Google Scholar 

  • Engström Y, Kadalayil L, Sun SC, Samakovlis C, Hultmark D, Faye I (1993) KB-like motifs regulate the induction of immune genes in Drosophila J Mol Biol 232: 327–333

    Article  PubMed  Google Scholar 

  • Fehlbaum P, Bulet P. Michaut L, Lagueux M, Broekaert WF, Hetru C, Hoffmann JA (1994) Insect immunity: septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 269: 33159–33163

    PubMed  CAS  Google Scholar 

  • Ferrandon D, Jung A, Criqui MC, Michaut L, Reichhart JM, Hoffmann JA (1998) A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J 17: 1217–1227

    Article  PubMed  CAS  Google Scholar 

  • Flyg C, Dalhammar G, Rasmuson B, Boman HG (1987) Insect Immunity. Inducible antibacterial activity in Drosophila. Insect Biochem 17: 153–160

    Article  CAS  Google Scholar 

  • Fujimoto K, Okino N, Kawabata S. Iwanaga S, Ohnishi E (1995) Nucleotide sequence of the cDNA encoding the proenzyme of phenol oxidase AI of Drosophila melanogaster. Proc Natl Acad Sci USA 92: 7769–7773

    Article  PubMed  CAS  Google Scholar 

  • Gazit E, Boman A, Boman HG, Shai Y (1995) Interaction of the mammalian antibacterial peptide cecropin PI with phospholipid vesicles. Biochemistry 34: 11479–11488

    Article  PubMed  CAS  Google Scholar 

  • Georgel P. Meister M, Kappler C, Lemaitre B, Reichhart JM, Hoffmann JA (1993) Insect immunity: the diptericin promoter contains multiple functional regulatory sequences homologous to mammalian acute-phase response elements. Biochem Biophys Res Commun 197: 508–517

    Article  PubMed  CAS  Google Scholar 

  • Georgel P, Kappler C, Langley E, Gross I, Nicolas E, Reichhart JM, Hoffmann JA (1995) Drosophila immunity. A sequence homologous to mammalian interferon consensus response element enhances the activity of the diptericin promoter. Nucleic Acids Res 23: 1140–1145

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, May MJ, Kopp EB (1998) NF-KB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16: 225–260

    Article  PubMed  CAS  Google Scholar 

  • Glaser RW (1918) On the existence of immunity principles in insects. Psyche 25: 38–46

    Google Scholar 

  • Govind S, Steward R (1991) Dorsoventral pattern formation in Drosophila: signal transduction and nuclear targeting. Trends in Genetics 7: 119–125

    PubMed  CAS  Google Scholar 

  • Gross I, Georgel P, Oertel-Buchheit P, Schnarr M. Reichhart JM (1999) Dorsal-B, a splice variant of the Drosophila factor dorsal, is a novel Rel/NF-KB transcriptional activator. Gene 228: 233–242

    Article  PubMed  CAS  Google Scholar 

  • Hanratty WP, Dearolf CR (1993) The Drosophila Tumorous-lethal hematopoietic oncogene is a dominant mutation in the hopscotch locus. Mol Gen Genet 238: 33–37

    PubMed  CAS  Google Scholar 

  • Harrison DA, Binari R, Stines Nahreini T. Gilman M, Perrimon N (1995) Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J 14: 2857–2865

    PubMed  CAS  Google Scholar 

  • Hoffmann JA, Reichhart JM, Hetru C (1996) Innate immunity in higher insects. Current Opinion in Immunol 8: 8–13

    Article  CAS  Google Scholar 

  • Hoffmann JA, Reichhart JM (1997) Drosophila immunity. Trends in Cell Biol 7: 309–316

    Article  CAS  Google Scholar 

  • Hultmark D, Engström A, Andersson K, Steiner H, Bennich H, Boman HG (1983) Insect immunity. Attacins, a family of antibacterial proteins from Flyalophora cecropia, EMBO J 2: 571–576

    PubMed  CAS  Google Scholar 

  • Ihle JN, Kerr IM (1995) Jaks and Stats in signaling by the cytokine receptor superfamily. Trends in Genetics 11: 69–74

    Article  PubMed  CAS  Google Scholar 

  • Ip TY, Reach M, Engström Y, Kadalayil L, Cai H, Gonzalez-Crespo S, Tatei K, Levine M (1993) Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75: 753–763

    Article  Google Scholar 

  • Iwanaga S, Kawabata SI, Muta T (1998) New types of clotting factors and-defense molecules found in horseshoe crab hemolymph: their structures and functions. J Biochem 123: 1–15

    PubMed  CAS  Google Scholar 

  • Johansson MW, Söderhäll K (1996) The prophenoloxidase activating system and associated proteins in invertebrates. Prog Mol Subcell Biol 15: 46–66

    PubMed  CAS  Google Scholar 

  • Kadalayil L, Petersen UM, Engström Y (1997) Adjacent GATA and KB-like motifs regulate the expression of a Drosophila immune gene. Nucl. Acids Res 25: 1233–1239

    Article  PubMed  CAS  Google Scholar 

  • Kappler C, Meister M, Lagueux M, Gateff E, Hoffmann JA, Reichhart JM (1993) Insect Immunity. Two l7bp repeats nesting a KB-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J 12: 1561–1568

    PubMed  CAS  Google Scholar 

  • Kowalevsky A (1887) Ein Beitrüge zur Kenntniss des Exkretions Organen. Biol Zentralbl 6: 125–144

    Google Scholar 

  • Kylsten P, Samakovlis C, Hultmark D (1990) The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO J 9: 217–224

    PubMed  CAS  Google Scholar 

  • Lambert J, Keppi E, Dimarcq JL, Wicker C, Reichhart JM, Dunbar B, Lepage P, van Dorsselaer A, Hoffmann JA, Fothergill J (1989) Insect immunity: isolation from immune blood of the dipteran Phormia terranora of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci USA 86: 262–266

    Article  PubMed  CAS  Google Scholar 

  • Landon C, Sodano P, Hetru C, Hoffmann JA, Ptak M (1997) Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Science 6: 1878–1884

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Kromer-Metzger E, Michaut L, Nicolas E, Meister M. Georgel P, Reichhart JM, Hoffmann JA (1995a) A recessive mutation, immune deficiency(imd), defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci USA 92: 9465–9469

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Meister M, Govind S, Georgel P, Steward R, Reichhart JM, Hoffmann JA (1995b) Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. EMBO J 14: 536–545

    PubMed  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spaetale/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973–983

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 94: 14614–14619

    Article  PubMed  CAS  Google Scholar 

  • Levashina EA, Ohresser S, Bulet P, Reichhart JM, Hetru C, Hoffmann JA (1995) Metchnikowin, a novel immune-inducible praline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem 233: 694–700

    Article  PubMed  CAS  Google Scholar 

  • Levashina EA, Ohresser S, Lemaitre B, Imler JL (1998) Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. J Mol Biol 278: 515–527

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Su YC, Becker E, Treisman J, Skolnik EY (1999) A Drosophila TNF-receptor-associated factor (TRAF) binds the Ste20 kinase Misshapen and activates Jun kinase. Current Biology 9: 101–104

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Hanratty WP, Dearolf CR (1995) An amino acid substitution in the Drosophila hop Tum-1 Jak kinase causes leukemia-like hematopoietic defects. EMBO J 14: 1412–1420

    PubMed  CAS  Google Scholar 

  • Luo H, Rose P, Barber D, Hanratty WP, Lee S, Roberts TM, D’Andrea AD, Dearolf CR (1997) Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Molec Cell Biol 1997: 1562–1571

    Google Scholar 

  • Manfruelli P, Reichhart JM, Steward R, Hoffmann JA, Lemaitre B (1999) A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIE. EMBO J 18: 3380–3391

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama K, Natori S (1988) Molecular cloning of cDNA for sapecin and unique expression of the sapecin gene during the development of Sarcophaga peregrina. J Biol Chem 263: 17117–17121

    PubMed  CAS  Google Scholar 

  • McDonald NQ, Hendrickson WA (1993) A structural superfamily of growth factors containing a cystine knot motif. Cell 73: 421–424

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway Jr CA (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394–397

    Article  PubMed  CAS  Google Scholar 

  • Meister M, Braun A, Kappler C, Reichhart JM, Hoffmann JA (1994) Insect immunity. A transgenic analysis in Drosophila defines several functional domains in the diptericin promoter. EMBO J 13: 5958–5966

    PubMed  CAS  Google Scholar 

  • Metalnikow S (1920) Immunité naturelle ou acquise des chenilles de Galleria mellonella. CR Acad Sci Paris 83: 817–820

    Google Scholar 

  • Nicolas E, Reichhart JM, Hoffmann JA, Lemaitre B (1998) In vivo regulation of the IxB homologue cactus during the immune response of Drosophila. J Biol Chem 273: 10463–10469

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Natori S (1985) Primary structure of sarcotoxin I, an antibacterial protein induced in the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem 260: 7174–7177

    PubMed  CAS  Google Scholar 

  • Paillot A (1920) L’immunité acquise chez les insectes. CR, Acad Sci Paris 83: 278–280

    Google Scholar 

  • Qiu P, Pan PC, Govind S (1998) A role for the Drosophila Toll/cactus pathway in larval hematopoiesis. Development 125: 1909–19520

    PubMed  CAS  Google Scholar 

  • Reichhart JM, Meister M, Dimarcq JL, Zachary D, Hoffmann D, Ruiz C, Richards G, Hoffmann JA (1992) Insect immunity: developmental and inducible activity of the Drosophila diptericin promoter. EMBO J 11: 1469–1477

    PubMed  CAS  Google Scholar 

  • Reichhart JM, Essrich M, Dimarcq JL, Hoffmann D, Hoffmann JA, Lagueux M (1989) Insect Immunity. Isolation of cDNA clones corresponding to diptericin, an inducible antibacterial peptide from Phormia terranovae (Diptera). Eur J Biochem 182: 423–427

    Article  PubMed  CAS  Google Scholar 

  • Rizki TM, Rizki RM (1984) The cellular defense system of Drosophila melanogaster. In: King RC, Akai H (eds) Insect ultrastructure Vol 2. Plenum Publishing Corporation, pp 579–604

    Google Scholar 

  • Rizki TM, Rizki RM, Grell EH (1980) A mutant affecting the crystal cells in Drosophila melanogaster. Wilhelm Roux’s Arch 188: 91–99

    Article  Google Scholar 

  • Robertson M, Postlethwait JH (1986) The humoral antibacterial response of Drosophila adults. Dev Comp Immunol 10: 167–179

    Article  PubMed  CAS  Google Scholar 

  • Roos E, Björklund G, Engström Y (1998) In vivo regulation of tissue-specific and LPS-inducible expression of the Drosophila Cecropin genes. Insect Molec Biol 7: 51–62

    Article  CAS  Google Scholar 

  • Shrestha R, Gateff E (1982) Ultrastructure and cytochemistry of the cell types in the larval hematopoietic organs and hemolymph of Drosophila melanogaster. Dev Growth Differ 24: 65–82

    Article  Google Scholar 

  • Sluss HK, Han Z, Barett T, Davis RJ, Ip YT (1996) A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes & Dev 10:2745–2758

    Article  CAS  Google Scholar 

  • Steiner H, Hultmark D, Engström A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246–248

    Article  PubMed  CAS  Google Scholar 

  • Steward R (1987) Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rd. Science 238: 692–694

    Article  PubMed  CAS  Google Scholar 

  • Tryselius Y, Samakovlis C, Kimbrell DA, Hultmark D (1992) CecC, a cecropin gene expressed during metamorphosis in Drosophila pupae. Eur J Biochem 204: 395–399

    Article  Google Scholar 

  • Wicker C, Reichhart JM, Hoffmann D, Hultmark D, Samakovlis C, Hoffmann JA (1990) Insect immunity. Characterization of a Drosophila eDNA encoding a novel member of the diptericin family of immune peptides. J Biol Chem 265: 22493–22498

    PubMed  CAS  Google Scholar 

  • Williams MJ, Rodriguez A, Kimbrell DA, Eldon E (1997) The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J 16: 6120–6130

    Article  PubMed  CAS  Google Scholar 

  • Wu LP, Anderson KV (1998) Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 392: 93–97

    Article  PubMed  CAS  Google Scholar 

  • Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ (1998) Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395: 284–288

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meister, M., Hetru, C., Hoffmann, J.A. (2000). The Antimicrobial Host Defense of Drosophila . In: Du Pasquier, L., Litman, G.W. (eds) Origin and Evolution of the Vertebrate Immune System. Current Topics in Microbiology and Immunology, vol 248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59674-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59674-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64078-0

  • Online ISBN: 978-3-642-59674-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics