Evolution of the T Cell Receptor Signal Transduction Units

  • T. W. F. Göbel
  • L. Bolliger
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 248)


The mammalian T cell receptor (TCR)/CD3 complex has been the focus of intense studies for many years. It consists of six different chains, which form hetero- and homodimers to constitute the complete TCR/CD3 complex (see Bentley and Mariuzza 1996; Lanzavecchia et al. 1999; Terhorst et al. 1995; Wange and Samelson 1996 for recent reviews on different aspects). The clonotypic TCR genes have now been isolated from a number of vertebrate species, including cartilaginous, bony fish, amphibia, and chickens (see Charlemagne et al. 1998; Chen et al. 1995 for review). Paradoxically, information regarding the nonmammalian CD3 genes is limited to three cloned CD3 homologues (Bernot and Auffray 1991; Dzialo and Cooper 1997; Göbel and Fluri 1997) and the chicken ζ chain (Göbel and Bolliger 1998).


CXXC Motif Dimerization Motif Chicken Repeat Cell Antigen Receptor Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bentley GA, Mariuzza RA (1996) The structure of the T cell antigen receptor. Annu Rev Immunol 14: 563–590PubMedCrossRefGoogle Scholar
  2. Berger MA, Dave V, Rhodes MR, Bosma GC, Bosma MJ, Kappes DJ, Wiest DL (1997) Subunit composition of pre-T cell receptor complexes expressed by primary thymocytes: CD36 is physically associated but not functionally required. J Exp Med 186: 1461–1467PubMedCrossRefGoogle Scholar
  3. Bernot A, Auffray C (1991) Primary structure and ontogeny of an avian CD3 transcript. Proc Natl Acad Sci USA 88: 2550–2554PubMedCrossRefGoogle Scholar
  4. Blumberg RS, Ley S, Sancho J, Lonberg N, Lacy E, McDermott F, Schad V, Greenstein JL, Terhorst C (1990) Structure of the T-cell antigen receptor: Evidence for two CD3 e subunits in the T-cell receptorCD3 complex. Proc Natl Acad Sci USA 87: 7220–7224PubMedCrossRefGoogle Scholar
  5. Bolliger L, Johansson B, Palmer E (1997) The short extracellular domain of the T cell receptor S chain is involved in assembly and signal transduction. Mol Immunol 34: 819–827PubMedCrossRefGoogle Scholar
  6. Borroto A, Mallabiabarrena A, Albar JP, Martinez AC, Alarcon B (1998) Characterization of the region involved in CD3 pairwise interactions within the T cell receptor complex. J Biol Chem 273: 12807–12816PubMedCrossRefGoogle Scholar
  7. Caplan S, Baniyash M (1996) Normal T cells express. two T cell antigen receptor populations, one of which is linked to the cytoskeleton via chain and displays a unique activation-dependent phosphorylation pattern. J Biol Chem 271: 20705–20712PubMedCrossRefGoogle Scholar
  8. Charlemagne J, Fellah JS, DeGuerra A, Kerfourn F, Partula S (1998) T-cell receptors in ectothermic vertebrates. Immunol Rev 166: 87–102PubMedCrossRefGoogle Scholar
  9. Chen C-H, Ager LL, Gartland GL, Cooper MD (1986) Identification of a T3/T cell receptor complex in chickens. J Exp Med 164: 375–380PubMedCrossRefGoogle Scholar
  10. Chen CH, Six A, Kubota T, Tsuji S, Kong F-K, Göbel T, Cooper MD (1995) T cell receptors and T cell development. Curr Top Microbiol Immunol 212: 37–54Google Scholar
  11. Chivers PT, Laboissiere MCA, Raines RT (1996) The CxxC motif; imperatives for the formation of native disulfide bonds in the cell. EM BO J 15: 2659–2667PubMedGoogle Scholar
  12. Clevers H, Dunlap S, Saito H, Georgopoulos K, Wileman T, Terhorst C (1988a) Characterization and expression of the murine CD3-epsilon gene. Proc Natl Acad Sci USA 85: 8623–8627PubMedCrossRefGoogle Scholar
  13. Clevers HC, Dunlap S, Wileman TE, Terhorst C (1988b) FIuman CD3-epsilon gene contains three miniexons and is transcribed from a non-TATA promoter. Proc Natl Acad Sci USA 85: 8156–8160PubMedCrossRefGoogle Scholar
  14. Clevers HC, Oosterwegel MA, Georgopoulos K (1993) Transcription factors in early T-cell development. Immunol Today 14: 591–596PubMedCrossRefGoogle Scholar
  15. Dave VP, Cao Z, Browne C, Alarcon B, Fernandez-Miguel G, Lafaille J. de la Hera A, Tonegawa S, Kappes DJ (1997) CD36 deficiency arrests development of the aß but not the y6 T cell lineage. EM BO J 16: 1360–1370CrossRefGoogle Scholar
  16. De Blasi A, Parruti G, Sallese M (1995) Regulation of G protein-coupled receptor kinase subtypes in activated T lymphocytes. Selective increase of beta-adrenergic receptor kinase I and 2. J Clin Invest 95: 203–210PubMedCrossRefGoogle Scholar
  17. Dietrich J, Geisler C (1998) T cell receptor Ç allows stable expression of receptors containing the CD37 leucine-based receptor sorting motif. J Biol Chem 273: 26281–26284PubMedCrossRefGoogle Scholar
  18. Dietrich J, Hou X, Wegener AMK, Geisler C (1994) CD37 contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor. EMBO J 13: 2156–2166Google Scholar
  19. Dietrich J, Hou XH, Wegener AMK, Pedersen LO, Odum N, Geisler C (1996a) Molecular characterization of the di-leucine-based internalization motif of the T cell receptor. J Biol Chem 271: 11441–11448PubMedCrossRefGoogle Scholar
  20. Dietrich J, Neisig A, Hou X, Wegener A-MK, Gajhede M, Geisler C (1996b) Role of CD3y in T cell receptor assembly. J Cell Biol 132: 299–310PubMedCrossRefGoogle Scholar
  21. Dzialo R, Cooper MD (1997) An amphibian CD3 homologue of the mammalian CD3y and S genes. Eur J Immunol 27: 1640–1647PubMedCrossRefGoogle Scholar
  22. Exley M, Wileman T, Müller B, Terhorst C (1995) Evidence for multivalent structure of T cell antigen receptor complex. Mol Immunol 11: 829–839CrossRefGoogle Scholar
  23. Fischer KD, Kong YY, Nishina H, Tedford K, Marengere LE, Kozieradzki I, Sasaki T. Starr M, Chan G, Gardener S, Nghiem MP, Bouchard D, Barbacid M, Bernstein A, Penninger JM (1998) Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr Biol 8: 554–562PubMedCrossRefGoogle Scholar
  24. Fuller-Espie S, Hoffman Towler P, Wiest DL, Tietjen I, Spain LM (1998) Transmembrane polar residues of TCR chain are required for signal transduction. Int Immunol 10: 923–933PubMedCrossRefGoogle Scholar
  25. Göbel TWF, Bolliger L (1998) The chicken TCR Ç chain restores the function of a mouse T cell hybridoma. J Immunol 160: 1552–1554PubMedGoogle Scholar
  26. Göbel TWF, Fluri M (1997) Identification and analysis of the chicken CD3y gene. Eur J Immunol 27: 194–198PubMedCrossRefGoogle Scholar
  27. Graef IA, Holsinger LJ, Diver S, Schreiber SL, Crabtree GR (1997) Proximity and orientation underline signaling by the non-receptor tyrosine kinase ZAP-70. EMBO J 16: 5618–5628PubMedCrossRefGoogle Scholar
  28. Haks MC, Krimpenfort P, Borst J. Kruisbeek AM (1998) The CD3y chain is essential for development of both the TCRaß and TCRyô lineages. EMBO J 17: 1871–1882PubMedCrossRefGoogle Scholar
  29. Hall C, Berkhout B, Alarcon B, Sancho J, Wileman T, Terhorst C (1991) Requirements for cell surface expression of the human TCR/CD3 complex in non-T cells. Int Immunol 3: 359–368PubMedCrossRefGoogle Scholar
  30. Holsinger LJ, Graef IA, Swat W, Chi T, Bautista DM, Davidson L, Lewis RS, Alt FW, Crabtree GR (1998) Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr Biol 8: 563–572PubMedCrossRefGoogle Scholar
  31. Huppa JB, Ploegh HL (1997) In vitro translation and assembly of a complete T cell receptor-CD3 complex. J Exp Med 186: 393–403PubMedCrossRefGoogle Scholar
  32. Huppa JB, Ploegh HL (1998) The eS-Sence of -SH in the ER. Cell 92: 145–148PubMedCrossRefGoogle Scholar
  33. Jacobs H (1997) Pre-TCR/CD3 and TCR/CD3 complexes: decamers with differential signalling properties? Immunol Today 18: 565–569PubMedGoogle Scholar
  34. Jin Y-J, Koyasu S, Moingeon P, Steinbrich R. Tarr GE. Reinherz EL (1990) A fraction of CDR subunits exists as disulfide-linked dimers in both human and murine T lymphocytes. J Biol Chem 265: 15850–15853PubMedGoogle Scholar
  35. Johansson B, Palmer E, Bolliger L (1999) The extracellular domain of the Ç-chain is essential for TCR function. J Immunol 162: 878–885PubMedGoogle Scholar
  36. Kishimoto H, Kubo RT, Yorifuji H, Nakayama T. Asano Y, Tada T (1995) Physical dissociation of the TCR-CD3 complex accompanies receptor ligation. J Exp Med 182: 1997–2006PubMedCrossRefGoogle Scholar
  37. Klemm JD, Schreiber SL, Crabtree GR (1998) Dimerization as a regulatory mechanism in signal transduction. Annu Rev Immunol 16: 569–592PubMedCrossRefGoogle Scholar
  38. Krissansen GW, Owen MJ, Verbi W, Crumpton MJ (1986) Primary structure of the T3 gamma subunit of the T3/T cell antigen receptor complex deduced from cDNA sequences: evolution of the T3 gamma and delta subunits. EMBO J 5: 1799–1808PubMedGoogle Scholar
  39. Lanier LL, Chang C, Spits H, Phillips JH (1992) Expression of cytoplasmic CD3s proteins in activated human adult natural killer (NK) cells and CD3 y, 6, s complexes in fetal NK cells. J Immunol 149: 1876–1880PubMedGoogle Scholar
  40. Lanzavecchia A, Iezzi G, Viola A (1999) From TCR Engagement to T Cell Activation: A Kinetic View of T Cell Behavior. Cell 96: 1–4PubMedCrossRefGoogle Scholar
  41. Lemmon MA, Flanagan JM, Treutlein HR, Zhang J, Engelmean DM (1992) Sequence specificity in the dimerization of transmembrane a-helices. Biochemistry 31: 12719–112725Google Scholar
  42. Li H, Lebedeva MI, Ward ES, Mariuzza RA (1997) Dual conformations of a T cell receptor Va homodimer: implications for variability in Va V13 domain association. J Mol Biol 269: 385–394PubMedCrossRefGoogle Scholar
  43. Malissen B, Schmitt-Verhulst A-M (1993) Transmembrane signalling through the T-cell-receptor-CD3 complex. Curr Opin Immunol 5: 324–333PubMedCrossRefGoogle Scholar
  44. Mallabiabarrena A, Jimenez MA, Rico M, Alarcon B (1995) A tyrosine-containing motif mediates ER retention of CD3-c and adopts a helix-turn structure. EMBO J 14: 2257–2268PubMedGoogle Scholar
  45. Manolios N, Collier S, Taylor J, Pollard J, Harrison LC, Bender V (1997) T-cell antigen receptor transmembrane peptides modulate T-cell function and T cell-mediated disease. Nat Med 3: 84–88PubMedCrossRefGoogle Scholar
  46. Pacheco-Castro A, Alvarez-Zapata D, Serrano-Torres P, Regueiro JR (1998) Signaling through a CD3 y-deficient TCR/CD3 complex in immortalized mature CD4+ and CD8+ T lymphocytes. J Immunol 161: 3152–3160PubMedGoogle Scholar
  47. Pawson T (1995) Protein modules and signalling networks. Nature 373: 573–580PubMedCrossRefGoogle Scholar
  48. Peter ME, Hall C, Ruhlmann A, Sancho J, Terhorst C (1992) The T-cell receptor chain contains a GTP/ GDP binding site. EMBO J 11: 933–941PubMedGoogle Scholar
  49. Rast JP, Anderson MK, Strong SJ, Luer C, Litman RT, Litman GW (1997) a, [3, y, and 6 T cell antigen receptor genes arose early in vertebrate phylogeny. Immunity 6: 1–11PubMedCrossRefGoogle Scholar
  50. Reich Z, Boniface J, Lyons D, Borochov N, Wachtel E, Davis M (1997) Ligand-specific oligomerization of T-cell receptor molecules. Nature 1: 617–6620Google Scholar
  51. Renard V, Ardouin L. Malissen M, Milon G, Lebastard M, Gillet A, Malissen B, Vivier E (1995) Normal development and function of natural killer cells in CD3c65/65 mutant mice. Proc Natl Acad Sci USA 92: 7545–7549PubMedCrossRefGoogle Scholar
  52. Reth M (1989) Antigen receptor tail clue. Nature 338: 383–384PubMedCrossRefGoogle Scholar
  53. Saito H, Koyama T, Georgopoulos K, Clevers H, Haser WG, LeBien T, Tonegawa S, Terhorst C (1987) Close linkage of the mouse and human CD3 y-and 6-chain genes suggests that their transcription is controlled by common regulatory elements. Proc Natl Acad Sci USA 84: 9131–9134PubMedCrossRefGoogle Scholar
  54. Sancho J, Peter ME, Franco R, Danielian S, Kang JS, Fagard R, Woods J, Reed JC, Kamoun M, Terhorst C (1993) Coupling of GTP-binding to the T cell receptor ( TCR) c-chain with TCR-mediated signal transduction. J Immunol 150: 3230–3242PubMedGoogle Scholar
  55. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387: 569–572PubMedCrossRefGoogle Scholar
  56. Stanners J, Kabouridis PS, McGuire KL, Tsoukas CD (1995) Interaction between G proteins and tyrosine kinases upon T cell receptor.CD3-mediated signaling. J Biol Chem 270: 30635–30642PubMedCrossRefGoogle Scholar
  57. Terhorst C, Simpson S, Wang B, She J, Hall C, Huang M, Wileman T, Eichmann K, Holländer G, Levelt C, Exley M (1995) Plasticity of the TCR-CD3 complex. In: Bell JI, Owen MJ, Simpson E (eds) T cell receptors. Oxford University Press, OxfordGoogle Scholar
  58. Tunnacliffe A, Buluwela L, Rabbitts TH (1987) Physical linkage of three CD3 genes on human chromosome 1I. EMBO J 6: 2953–2957PubMedGoogle Scholar
  59. Tunnacliffe A, Olsson C, Buluwela L, Rabbitts TH (1988) Organization of the human CD3 locus on chromosome I L Eur J Immunol 18: 1639–1642CrossRefGoogle Scholar
  60. van den Eisen P, Georgopoulos K, Shepley BA, Orkin S, Terhorst C (1986) Exon/intron organization of the genes coding for the 6 chains of the human and murine T-cell receptor/T3 complex. Proc Natl Acad Sci USA 83: 2944–2948CrossRefGoogle Scholar
  61. van Oers NS, Love PE, Shores EW, Weiss A (1998) Regulation of TCR signal transduction in murine thymocytes by multiple TCR -chain signaling motifs. J Immunol 160: 163–170PubMedGoogle Scholar
  62. Wang B, Wang N, Whitehurst CE, She J, Chen J, Terhorst C (1999) T lymphocyte development in the absence of CD3s or CD3y6s. J Immunol 162: 88–94PubMedGoogle Scholar
  63. Wang J, Lim K, Smolyar A, Teng M, Liu J. Tse AG, Hussey RE, Chishti Y, Thomson CT, Sweet RM, Nathenson SG, Chang HC, Sacchettini JC, Reinherz EL (1998) Atomic structure of an aß T cell receptor ( TCR) heterodimer in complex with an anti-TCR Fab fragment derived from a mitogenic antibody. EMBO J 17: 10–26PubMedCrossRefGoogle Scholar
  64. Wange RL, Samelson LE (1996) Complex complexes: Signaling at the TCR. Immunity 5:197–205PubMedCrossRefGoogle Scholar
  65. Wilson IA, Garcia KC (1997) T-cell receptor structure and TCR complexes. Curr Opin Struct Biol 7: 839–848PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • T. W. F. Göbel
    • 1
  • L. Bolliger
    • 1
  1. 1.Basel Institute for ImmunologyBaselSwitzerland

Personalised recommendations