Semi-Monte Carlo Light Tracing Applied to the Study of Road Visibility in Fog

  • Eric Dumont
Conference paper


Simulation is a valuable tool as a complement to experiments for the network of Laboratoires des Ponts et Chaussées in its research on road safety in fog. A semi-Monte Carlo simulation code has been implemented in order to study the influence of fog microphysical characteristics on visibility. This paper explains why we chose to use a Monte Carlo method. Then the light tracing technique is described, along with the technique which produces photometrical results. The photometer calibration procedure is modeled and used as a test. An example of application is given which compares the effect of various types of fog on a road scene. Finally, the problem of noise reduction is discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rozé, C., Maheu, B., Gréhan, G.: Evaluations of the sighting distance in a foggy atmosphere. Atmospheric Environment, 28, 5 (1994) 769–775CrossRefGoogle Scholar
  2. 2.
    Volnistova, L.P., Drofa, A.S., Kurbanov, I.O.: Experimental study of objects visibility in fog. Atmospheric and Oceanic Physics, 26, 7 (1990) 524–529Google Scholar
  3. 3.
    Dumont, E., Zouboff, V.: Approche de la vision dans le brouillard par la fonction de transfert de contraste. Bulletin des Laboratoires des Ponts et Chaussées, 203 (1996) 13–22Google Scholar
  4. 4.
    Sérézat, L.: Contribution à la qualification des salles de brouillard comme outils pour l’évaluation de la visibilité de la signalisation routière. Thèse de l’université Blaise Pascal, Clermont-Ferrand, France (1997)Google Scholar
  5. 5.
    Nameda, N.: Fog modulation transfer function and signal lighting. Lighting Research & Technology, 24, 2 (1992) 103–106CrossRefGoogle Scholar
  6. 6.
    Bierman, A., Raffucci, J., Boyce, P.R., DeCusatis, C.: Exit-sign image degradation in smoke: a quantitative simulation. Lighting Research & Technology, 28, 4 (1996) 177–188CrossRefGoogle Scholar
  7. 7.
    Bruscaglioni, P., Donelli, P., Ismaelli, A., Zaccanti, G.: Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium. Applied Optics, 32, 15 (1993) 2813–2824CrossRefGoogle Scholar
  8. 8.
    Paulmier, G., Carta, V., Girasole, T., Maheu, B., Rozé, C.: Un outil de simulation pour les études de visibilité dans le brouillard. Bulletin des Laboratoires des Ponts et Chaussées, 205 (1996) 25–38Google Scholar
  9. 9.
    Glassner, A.S.: Principles of digital image synthesis. Morgan Kaufmann Publishers Inc., 1995Google Scholar
  10. 10.
    Rushmeier, H.E., Torrance, K.E.: The zonal method for calculating light intensities in the presence of a participating medium. Computer Graphics, 21, 4 (1987) 293–302CrossRefGoogle Scholar
  11. 11.
    Bresciani, F., Rossi, G.: A computational method to simulate light propagation in fog: theory, experimental verification and applicability to road lighting systems analysis. LUX EUROPA 7th European Lighting Conference, 2 (1993) 479–488Google Scholar
  12. 12.
    Languénou, E., Chelle, M., Bouatouch, K.: Simulation d’éclairage dans un environnement contenant des milieux semi-transparents. Rapport de Recherche 800, IRISA, France (1994)Google Scholar
  13. Blasi, P., LeSaëc, B., Schlick, C.: An importance driven Monte Carlo solution to the global illumination problem. Proc. of the 5th Eurographics Workshop on Rendering (1994) 173–183Google Scholar
  14. 14.
    DaDalto, L., Jessel, J.P., Caubet, R., La représentation des milieux participants en images de synthése. Proc. AFIG’95Google Scholar
  15. 15.
    Perez, F., Pueyo, X., Sillion, F.X.: Global illumination techniques for the simulation of participating media. Proc. of the 8th Eurographics Workshop on Rendering (1997) 309–320Google Scholar
  16. 16.
    Lafortune, E.P., Willems, Y.D.: Rendering participating media with bidirectional path tracing. Proc. of the 7th Eurographics Workshop on Rendering (1996) 92–101Google Scholar
  17. 17.
    Dutré, P., Lafortune, E., Willems, Y.D.: Monte Carlo light tracing with direct computation of pixel intensities. Proc. Compugraphics’93, 128–137Google Scholar
  18. 18.
    Battistelli, E., Bruscaglioni, P., Ismaelli, A., Zaccanti, G.: The effect of a strongly inhomogeneous medium on the propagation of light beams under multiple scattering conditions. Optica Acta, 32, 6 (1985) 717–730CrossRefGoogle Scholar
  19. 19.
    Carter, L.L., Cashwell, E.D.: Particle-transport simulation with the Monte Carlo method. Los Alamos National Laboratory, Los Alamos, NM, TID-26607 (1975)CrossRefGoogle Scholar
  20. 20.
    DeCusatis, C.: Handbook of applied photometry. AIP Press, 1997Google Scholar
  21. 21.
    Rushmeier, H.E., Ward, G.J.: Energy preserving non-linear filters. Proc. SIG- GRAPH’94, 131–138Google Scholar
  22. 22.
    Pattanaik, S.N., Mudur, S.P.: Computation of global illumination in a participating medium by Monte Carlo simulation. The Journal of Vis. and Comp. Animation, 4, 3 (1993) 133–152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Eric Dumont
    • 1
  1. 1.Laboratoire Central des Ponts & Chaussées 58Paris Cedex 15France

Personalised recommendations