Skip to main content

β3 Adrenergic Receptors as a Therapeutic Target for Obesity

  • Chapter
Obesity: Pathology and Therapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 149))

  • 305 Accesses

Abstract

The physiological actions of catecholamines are mediated via a- and β-adrenergic receptors (AR). Activation of adipocyte βAR results in lipid mobilization and release from white adipose tissue, and oxidation of fatty acids in brown fat. The net effect of adipocyte βAR activation is the reduction of triglyceride stores in white fat with a concomitant increase in thermogenesis and thermogenic capacity of brown fat. Because of the potential significance of adipocyte βAR in overall energy balance, much attention has been devoted to their characterization. Pioneering work by Harms et al. (1974) suggested the existence of βAR with atypically low affinity for standard βAR antagonists in adipocytes; however the notion of an “atypical” adipocyte βAR was not widely accepted at the time owing to the lack of selective pharmacological agents. Thus, available radioligands failed to detect these atypical receptors and no agonists were available that would selectively activate them (Bahouth and Malbon 1988). This state of affairs changed dramatically nearly 15 years ago when researchers at Beecham Pharmaceuticals identified novel compounds that potently induced thermogenesis in rats via interactions with an atypical βAR (Arch et al. 1984). These agents placed the concept of an atypical adipocyte βAR on solid pharmacological ground, and ultimately provided the impetus for the molecular cloning of the β3AR. Perhaps more significantly, the agents discovered by Beecham were found to be highly effective in rodent models of obesity and adult-onset diabetes, holding out the promise that the “atypical” adipocyte β3AR would be an important therapeutic target for the treatment of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arbeeny CM, Meyers DS, Hillyer DE, Bergquist KE (1995) Metabolic alterations associated with the antidiabetic effect of beta 3-adrenergic receptor agonists in obese mice. Am J Physiol 268(4 Pt 1):E678–E684

    PubMed  CAS  Google Scholar 

  • Arch JR, Ainsworth AT, Cawthorne MA, Piercy V, Sennitt MV, Thody VE, Wilson C, Wilson S (1984) Atypical beta-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309(5964)163–165

    PubMed  CAS  Google Scholar 

  • Arch JRS, Bywater RJ, Coney KA, Ellis RDM, Thurlby PL, Smith, SA, Zed C (1989) Influences on Body Composition and Mechanism of Action of the β-Adrenoceptor Agonist BRL26830A. In: Lardy H, Stratman F (eds) Hormones, Thermogenesis, and Obesity. Elsevier Science Publishing Co., London, pp 465–475

    Google Scholar 

  • Arch JRS, Wilson S (1996) Prospects for β3-adrenoceptor agonists in the treatment of obesity and diabetes. Int J Obes 20:191–199

    CAS  Google Scholar 

  • Astrup A, Bulow J, Madsen J, Christensen NJ (1985) Contribution of BAT and skeletal muscle to thermogenesis induced by ephedrine in man. Am J Physiol 248(5 Pt 1):E507–E515

    PubMed  CAS  Google Scholar 

  • Atgie C, D’Allaire F, Bukowiecki LJ (1997) Role of beta 1- and beta 3-adrenoceptors in the regulation of lipolysis and thermogenesis in rat brown adipocytes. Am J Physiol 273(4 Pt 1):C1136–C1142

    PubMed  CAS  Google Scholar 

  • Bahouth SW, Malbon CC (1988) Subclassification of beta-adrenergic receptors of rat fat cells: a re-evaluation. Mol Pharmacol 34(3)318–326

    PubMed  CAS  Google Scholar 

  • Begin-Heick N (1995) Beta 3-adrenergic activation of adenylyl cyclase in mouse white adipocytes: modulation by GTP and effect of obesity. J Cell Biochem 58(4)464–473

    PubMed  CAS  Google Scholar 

  • Blaak EE, van Baak MA, Kempen KP, Saris WH (1993) Role of alpha- and betaadrenoceptors in sympathetically mediated thermogenesis. Am J Physiol 264(1 Pt 1): E11–E17

    PubMed  CAS  Google Scholar 

  • Blin N, Camoin L, Maigret B, Donny Strosberg A (1993) Structural and conformational features determining selective signal transduction in the /23-adrenergic receptor. Mol Pharmacol 44:1094–1104

    PubMed  CAS  Google Scholar 

  • Bloom JD, Dutia MD, Johnson BD, Wissner A, Burns MG, Largis EE, Dolan JA, Claus TH (1992) Disodium (R,R)-5-[2-[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-l,3-benzodioxole-2,2-dicarboxylate (CL 316, 243). A potent betaadrenergic agonist virtually specific for beta 3 receptors. A promising antidiabetic and antiobesity agent. J Med Chem 35(16):3081–3084

    PubMed  CAS  Google Scholar 

  • Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino J-P (1997) Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 408:39–42

    PubMed  CAS  Google Scholar 

  • Breslow MJ, An Y, Berkowitz DE (1997) Beta-3 adrenoceptor (beta-3AR) expression in leptin treated OB/OB mice. Life Sci 61(l)59–64

    PubMed  CAS  Google Scholar 

  • Brown JA, Machida CA (1994) The 5’ flanking region of the rat beta 3-adrenergic receptor gene: divergence with the human gene and implications for speciesspecific gene expression. DNA Seq 4(5)319–324

    PubMed  CAS  Google Scholar 

  • Candelore MR, Deng L, Tota LM, Kelly LJ, Cascieri MA, Strader CD (1996) Pharmacological characterization of a recently described human β3-adrenergic receptor mutant. Endocrinology 137(6)2638–2641

    PubMed  CAS  Google Scholar 

  • Carpene C, Galitzky J, Collon P, Esclapez F, Dauzats M, Lafontan M (1993) Desensitization of beta-1 and beta-2, but not beta-3, adrenoceptor-mediated lipolytic responses of adipocytes after long-term norepinephrine infusion. J Pharmacol Exp Ther 265(l)237–247

    PubMed  CAS  Google Scholar 

  • Casteilla L, Muzzin P, Revelli JP, Ricquier D, Giacobino JP (1994) Expression of beta 1- and beta 3-adrenergic-receptor messages and adenylate cyclase betaadrenergic response in bovine perirenal adipose tissue during its transformation from brown into white fat. Biochem J 297(Pt l):93–97

    Google Scholar 

  • Cawthorne MA, Sennitt MV, Arch JRS, Smith SA (1992) BRL 35135, a potent and selective atypical β-adrenoceptor agonist. Am J Clin Nutr 55:252S–257S

    PubMed  CAS  Google Scholar 

  • Champigny O, Ricquier D (1996) Evidence from in vitro differentiating cells that adrenoceptor agonists can increase uncoupling protein mRNA level in adipocytes of adult humans: an RT-PCR study. J Lipid Res 37:1907–1914

    PubMed  CAS  Google Scholar 

  • Champigny O, Ricquier D, Blondel O, Mayers RM, Briscoe MG, Holloway BR (1991) Beta 3-adrenergic receptor stimulation restores message and expression of brownfat mitochondrial uncoupling protein in adult dogs. Proc Natl Acad Sci USA 88(23)10774–10777

    PubMed  CAS  Google Scholar 

  • Chapman BJ, Farquahar DL, Galloway SM, Simpson GK, Munro JF (1988) The effects of a new beta-adrenoceptor agonist BRL 26830A in refractory obesity. Int J Obes 12(2)119–123

    PubMed  CAS  Google Scholar 

  • Charon C, Krief S, Diot-Dupuy F, Strosberg AD, Emorine LJ, Bazin R (1995) Early alterations in the brown adipose tissue adenylate cyclase system of pre-obese Zucker rat fa/fa pups: decreased G-proteins and beta 3-adrenoceptor activities. Biochem J 312(Pt 3):781–788

    Google Scholar 

  • Cimmino M, Bukowiecki LJ, Geloen A (1997) In situ lipolysis measured by in vivo microdialysis during ac

    Google Scholar 

  • Clémente K, Vaisse C, Manning BS, Basdevant A, Guy-Grand B, Ruiz J, Silver KD, Shuldiner AR, Froguel P, Donny Strosberg A (1995) Genetic variation in the β3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med 333(6)351–354

    Google Scholar 

  • Cohen ML, Granneman JG, Chaudhry A, Schenck KW, Cushing DJ, Palkowitz AD (1995) Is the “atypical” beta-receptor in the rat stomach fundus the rat beta 3 receptor?. J Pharmacol Exp Ther 272(1 )446–451

    PubMed  CAS  Google Scholar 

  • Collins S, Daniel KW, Petro AE, Surwit RS (1997) Strain-specific response to β3 adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology 138(1)405–413

    PubMed  CAS  Google Scholar 

  • Collins S, Daniel KW, Rohlfs EM, Ramkumar V, Taylor IL, Gettys TW (1994) Impaired expression and functional activity of the beta 3- and beta 1-adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Mol Endocrinol 8(4)518–527

    PubMed  CAS  Google Scholar 

  • Connacher AA, Bennet WM, Jung RT (1992) Clinical studies with the betaadrenoceptor agonist BRL 26830A. Am J Clin Nutr 55(1 Suppl):258S–261S

    PubMed  CAS  Google Scholar 

  • Connacher AA, Bennet WM, Jung RT, Rennie MJ (1992) Metabolic effects of three weeks administration of the beta-adrenoceptor agonist BRL 26830A. Int J Obes Relat Metab Disord 16(9):685–694

    PubMed  CAS  Google Scholar 

  • Connacher A A, Jung RT, Mitchell PEG (1988) Weight loss in obese subjects on a restricted diet given BRL 26830A, a new atypical β adrenoceptor agonist. Brit Med J 296:1217–1220

    CAS  Google Scholar 

  • Connacher AA, Lakie M, Powers N, Elton RA, Walsh EG, Jung RT (1990) Tremor and the anti-obesity drug BRL 26830A. Br J Clin Pharmacol 30(4):613–615

    PubMed  CAS  Google Scholar 

  • Crespo P, Cachero TG, Xu N, Gutkind JS (1995) Dual effect of β-adrenergic receptors on mitogen-activated protein kinase: Evidence for a βy-Dependent activation and a Ga3-cAMP-mediated inhibition. J Biol Chem 270(42)25259–25265

    PubMed  CAS  Google Scholar 

  • Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the beta 2-adrenergic receptor to different G proteins by protein kinase A. Nature 390(6655)88–91

    PubMed  CAS  Google Scholar 

  • Danforth Jr E, Himms-Hagen J (1997) Obesity and diabetes and the beta-3 adrenergic receptor. Eur J Endocrinol 136:362–365

    PubMed  CAS  Google Scholar 

  • Deng C, Moinat M, Curtis L, Nadakal A, Preitner F, Boss O, Assimacopoulos-Jeannet F, Seydoux J, Giacobino J-P (1997) Effects of β-Adrenoceptor subtype stimulation on obese gene messenger ribonucleic acid and on leptin secretion in mouse brown adipocytes differentiated in culture. Endocrinology 138(2)548–552

    PubMed  CAS  Google Scholar 

  • Deng C, Paoloni-Giacobino A, Kuehne F, Boss O, Revelli JP, Moinat M, Cawthorne MA, Muzzin P, Giacobino JP (1996) Respective degree of expression of beta 1-, beta 2-, beta 3-adrenoceptors in human brown and white adipose tissues. Brit J Pharmacol 118(4)929–934

    CAS  Google Scholar 

  • de Souza CJ, Hirshman MF, Horton ES (1997) CL-316,243, a beta 3-specific adrenoceptor agonist, enhances insulin-stimulated glucose disposal in nonobese rats. Diabetes 48(8)1257–1263

    Google Scholar 

  • Dolan JA, Muenkel HA, Burns MG, Pellegrino SM, Fraser CM, Pietri F, Donny Strosberg A, Largis EE, Dutia MD, Bloom JD, Bass AS, Tanikella TK, Cobuzzi A, Lai FM, Claus TH (1994) Beta 3- adrenoceptor selectivity of the dioxolane dicarboxylate phenethanolamines. J Pharmacol Exp Ther 269(3)1000–1006

    PubMed  CAS  Google Scholar 

  • Donny Strosberg A (1997) Structure and function of the β 3-adrenergic receptor. Annu Rev Pharmacol Toxicol 37:421–450

    PubMed  CAS  Google Scholar 

  • Eason MG, Jacinto MT, Liggett SB (1994) Contribution of ligand structure to activation of alpha 2-adrenergic receptor subtype coupling to Gs. Mol Pharmacol 45(4)696–702

    PubMed  CAS  Google Scholar 

  • Elbein SC, Hoffman M, Barrett K, Wegner K, Miles C, Bachman K, Berkowitz D, Shuldiner AR, Leppert MF, Hasstedt S (1996) Role of the beta 3-adrenergic receptor locus in obesity and noninsulin-dependent diabetes among members of Caucasian families with a diabetic sibling pair. J Clin End Met 81(12)4422–4427

    CAS  Google Scholar 

  • Emorine LJ, Marullo S, Briend-Sutren M-M, Patey G, Tate K, Delavier-Klutchko C, Donny Strosberg A (1989) Molecular characterization of the human β 3-adrenergic receptor. Science 245:1118–1120.

    PubMed  CAS  Google Scholar 

  • Enocksson S, Shimizu M, Lonnqvist F, Nordenstrom J, Arner P (1995) Demonstration of an in vivo functional beta 3-adrenoceptor in man. J Clin Invest 95(5)2239–2245

    PubMed  CAS  Google Scholar 

  • Feve B, Baude B, Krief S, Strosberg AD, Pairault J, Emorine LJ (1992) Inhibition by dexamethasone of beta 3-adrenergic receptor responsiveness in 3T3-F442A adipocytes. Evidence for a transcriptional mechanism. J Biol Chem 267(22)15909–15915

    PubMed  CAS  Google Scholar 

  • Feve B, Elhadri K, Quignard-Boulange A, Pairault J (1994) Transcriptional downregulation by insulin of the beta 3-adrenergic receptor expression in 3T3-F442A adipocytes: a mechanism for repressing the cAMP signaling pathway. Proc Natl Acad Sci USA 91(12)5677–5681

    PubMed  CAS  Google Scholar 

  • Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH (1997) Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genetics 15:269–272

    CAS  Google Scholar 

  • Fujisawa T, Ikegami H, Yamato E, Takekawa K, Nakagawa Y, Hamada Y, Oga T, Ueda H, Shintani M, Fukuda M, Ogihara T (1996) Association of Trp64 Arg mutation of the beta3-adrenergic-receptor with NIDDM and body weight gain. Diabetologia 39(3)349–352

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Wada M, Fukuda K, Fukami M, Yoshioka S, Yoshioka T, Horikoshi H (1991) Characterization of CS-045, a new oral antidiabetic agent, II. Effects on glycemic control and pancreatic islet structure at a late stage of the diabetic syndrome in C57BL/KsJ-db/db mice. Metabolism 40(11):1213–1218

    PubMed  CAS  Google Scholar 

  • Gettys TW, Watson PM, Seger L, Padgett M, Taylor IL (1997) Adrenalectomy after weaning restores beta 3-adrenergic receptor expression in white adipocytes from C57BL/6J-ob/ob mice. Endocrinology 138(7)2697–2704

    PubMed  CAS  Google Scholar 

  • Garruti G, Ricquier D (1992) Analysis of uncoupling protein and its mRNA in adipose tissue deposits of adult humans. Int J Obes Relat Metab Disord 16(5)383–390

    PubMed  CAS  Google Scholar 

  • Ghorbani M, Claus TH, Himms-Hagen J (1997) Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta 3-adrenoceptor agonist. Biochem Pharmacol 54(1)121–131

    PubMed  CAS  Google Scholar 

  • Gimeno RF, Dembski M, Weng X, Deng N, Shyjan AW, Gimeno CJ, Iris F, Ellis SJ, Woolf EA, Tartaglia LA (1997) Cloning and characterization of an uncoupling protein homolog: A potential molecular mediator of human thermogenesis. Diabetes 46:900–906

    PubMed  CAS  Google Scholar 

  • Goldberg GR, Prentice AM, Murgatroyd PR, Haines W, Tuersley MD (1995) Effects on metabolic rate and fuel selection of a selective β-3 agonist (ICI D7114) in healthy lean men. Int J Obes 19:625–631

    CAS  Google Scholar 

  • Gong DW, He Y, Karas M, Reitman M (1997) Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta 3-adrenergic agonists, and leptin. J Biol Chem 272(39)24129–24132

    PubMed  CAS  Google Scholar 

  • Granneman JG (1995) Why do adipocytes make the β3adrenergic receptor?. Cell Signal 7(1)9–15

    PubMed  CAS  Google Scholar 

  • Granneman JG, Lahners KN (1994) Analysis of human and rodent β 3-adrenergic receptor messenger ribonucleic acids. Endocrinol 135(3)1025–1031

    CAS  Google Scholar 

  • Granneman JG, Lahners KN, Chaudhry A (1993) Characterization of the human -β3 adrenergic receptor gene. Mol Pharmacol 44:264–270

    PubMed  CAS  Google Scholar 

  • Granneman JG, Lahners KN, Chaudhry A (1991) Molecular cloning and expression of the rat β 3-adrenergic receptor. Mol Pharmacol 40:895–899

    PubMed  CAS  Google Scholar 

  • Granneman JG, Lahners KN, Rao DD (1992) Rodent and human β 3-adrenergic receptor genes contain an intron within the protein-coding block. Mol Pharmacol 42:964–970

    PubMed  CAS  Google Scholar 

  • Granneman JG, Lahners KN, Zhai Y (1998) Agonist interactions with chimeric and mutant β1- and β3-adrenergic receptors: Involvement of the seventh transmembrane region in conferring subtype specificity. Mol Pharmacol, in press

    Google Scholar 

  • Grujic D, Susulic VS, Harper ME, Himms-Hagen J, Cunningham BA, Corkey BE, Lowell BB (1997) Beta 3-adrenergic receptors on white and brown adipocytes mediate beta 3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. J Biol Chem 272(28)17686–17693

    PubMed  CAS  Google Scholar 

  • Hadri KE, Charon C, Pairault J, Hauguel-De Mouzon S, Quignard-Boulange A, Feve B (1997) Down-regulation of beta 3-adrenergic receptor expression in rat adipose tissue during the fasted/fed transition: evidence for a role of insulin. Biochem J 323(Pt 2)359–364

    PubMed  Google Scholar 

  • Hadri KE, Courtalon A, Gauthereau X, Chambaut-Guerin AM, Pairault J, Feve B (1997) Differential regulation by tumor necrosis factor-alpha of beta 1-, beta 2-, and beta 3-adrenoreceptor gene expression in 3T3-F442A adipocytes. J Biol Chem 272(39)24514–24521

    PubMed  CAS  Google Scholar 

  • Hadri KE, Feve B, Pairault J (1996) Developmental expression and functional activity of beta 1- and beta 3-adrenoceptors in murine 3T3-F442A differentiating adipocytes. Eur J Pharmacol 297(1-2):107–119

    PubMed  Google Scholar 

  • Harms HH, Zaagsma J, Van der Wal B (1974) Beta-adrenoceptor studies. III. On the beta-adrenoceptors in rat adipose tissue. Eur J Pharmacol 25(1):87–91

    PubMed  CAS  Google Scholar 

  • Higashi K, Ishikawa T, Ito T, Yonemura A, Shige H, Nakamura H (1997) Association of a genetic variation in the beta 3-adrenergic receptor gene with coronary heart disease among Japanese. Biochem Biophys Res Comm 232(3)728–730

    PubMed  CAS  Google Scholar 

  • Himms-Hagen J, Cui J, Danforth Jr E, Taatjes DJ, Lang SS, Waters BL, Claus TH (1994) Effect of CL-316, 243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Physiol 266(4 Pt 2):R1371-R1382

    Google Scholar 

  • Hoffstedt J, Shimizu M, Sjostedt S, Lonnqvist F (1995) Determination of beta 3-adrenoceptor mediated lipolysis in human fat cells. Obes Res 3:447–459

    PubMed  CAS  Google Scholar 

  • Holloway BR, Howe R, Rao BS, Stribling D (1992) ICI D7114: a novel selective adrenoceptor agonist of brown fat and thermogenesis. Am J Clin Nutr 55(Suppl 1):262S–264S

    PubMed  CAS  Google Scholar 

  • Holloway BR, Howe R, Rao BS, Stribling D, Mayers RM, Briscoe MG, Jackson JM (1991) ICI D7114 a novel selective beta-adrenoceptor agonist selectively stimulates brown fat and increases whole-body oxygen consumption. Br J Pharmacol 104(1):97–104

    PubMed  CAS  Google Scholar 

  • Kelly Moule S, Welsh GI, Edgell NJ, Foulstone EJ, Proud CG, Denton RM (1997) Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and 0-adrenergic agonists in rat epididymal fat cells: activation of protein kinase B by wortmannin-sensitive and -insensitive mechanisms. J Biol Chem 272(12)7713–7719

    Google Scholar 

  • Klaus S, Muzzin P, Revelli JP, Cawthorne MA, Giacobino JP, Ricquier D (1995) Control of beta 3-adrenergic receptor gene expression in brown adipocytes in culture. Mol Cell Endocrinol 109(2)189–195

    PubMed  CAS  Google Scholar 

  • Krief S, Lonnqvist F, Raimbault S, Baude B, Van Spronsen A, Arner P, Strosberg AD, Ricquier D, Emorine LJ (1993) Tissue distribution of beta 3-adrenergic receptor mRNA in man. J Clin Invest 91(l)344–349

    PubMed  CAS  Google Scholar 

  • Kurabayashi T, Carey DGP, Morrison NA (1996) The 03-adrenergic receptor gene Trp64Arg Mutation is overrepresented in obese women: Effects on weight, BMI, abdominal fat, blood pressure, and reproductive history in an elderly Australian population. Diabetes 45:1358–1363

    PubMed  CAS  Google Scholar 

  • Landi M, Croci T, Manara L (1993) Similar atypical beta-adrenergic receptors mediate in vitro rat adipocyte lipolysis and colonic motility inhibition. Life Sci 53(18): PL297–PL302

    PubMed  CAS  Google Scholar 

  • Langin D, Portillo MP, Saulnier-Blache JS, Lafontan M (1991) Coexistence of three beta-adrenoceptor subtypes in white fat cells of various mammalian species. Eur J Pharmacol 199(3)291–301

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Pitcher J, Krueger K, Daaka Y (1998) Mechanisms of beta-adrenergic receptor desensitization and resensitization. Adv Pharmacol 42:416–420

    PubMed  CAS  Google Scholar 

  • Lelias JM, Kaghad M, Rodriguez M, Chalon P, Bonnin J, Dupre I, Delpech B, Bensaid M, LeFur G, Ferrara P, Caput D (1993) Molecular cloning of a human 03-adrenergic receptor cDNA. FEBS Lett 324(2)127–130

    PubMed  CAS  Google Scholar 

  • Lenhard JM, Klliewer SA, Paulik MA, Plunket KD, Lehmann JM, Weiel JE (1997) Effect of troglitazone and metformin on glucose and lipid metabolism: alterations of two distinct molecular pathways. Biochem Pharmacol 54:801–808

    PubMed  CAS  Google Scholar 

  • Liu YL,Toubro S, Astrup A, Stock MJ (1995) Contribution of beta 3-adrenoceptor activation to ephedrine-induced thermogenesis in humans. Int J Obes Relat Metab Disord 19(9)678–685

    PubMed  CAS  Google Scholar 

  • Lonnqvist F, Krief S, Strosberg AD, Nyberg S, Emorine LJ, Arner P (1993) Evidence for a functional beta 3-adrenoceptor in man. Br J Pharmacol 110(3)929–936

    PubMed  CAS  Google Scholar 

  • Lopez-Ilasaca M, Crespo P, Pellici PG, Gutkind JS, Wetzker R (1997) Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science 275(5298)394–397

    PubMed  CAS  Google Scholar 

  • Lowell BB, Flier JS (1997) Brown Adipose Tissue, ß3-Adrenergic Receptors, and Obesity. Annu Rev Med 48:307–316

    PubMed  CAS  Google Scholar 

  • Marbach I, Shiloach J, Levitzki A (1988) Gi affects the agonist-binding properties of beta-adrenoceptors in the presence of Gs. Eur J Biochem 172(l)239–246

    PubMed  CAS  Google Scholar 

  • McLaughlin DP, MacDonald A (1991) Characterization of catecholamine-mediated relaxations in rat isolated gastric fundus: evidence for an atypical betaadrenoceptor. Br J Pharmacol 103(2)1351–1356

    PubMed  CAS  Google Scholar 

  • Meier MK, Alig L, Burgi-Saville ME, Muller M (1984) Phenethanolamine derivatives with calorigenic and antidiabetic qualities. Int J Obes 8[Suppl l]:215–225

    PubMed  CAS  Google Scholar 

  • Mercer SW, Trayhurn P (1986) Effects of ciglitazone on insulin resistance and thermogenic responsiveness to acute cold in brown adipose tissue of genetically obese (ob/ob) mice. FEBS Lett 195(1-2)12–16

    PubMed  CAS  Google Scholar 

  • Mitchell BD, Blangero J, Comuzzie AG, Almasy LA, Shuldiner AR, Silver K, Stern MP, MacCluer JW, Hixon JE (1998) A paired sibling analysis of the beta-3 adrenergic receptor and obesity in Mexican Americans. J Clin Invest 101:584–587

    PubMed  CAS  Google Scholar 

  • Mitchell TH, Ellis RD, Smith SA, Robb G, Cawthorne MA (1989) Effects of BRL 35135, a beta-adrenoceptor agonist with novel selectivity, on glucose tolerance and insulin sensitivity in obese subjects. Int J Obes 13(6)757–766

    PubMed  CAS  Google Scholar 

  • Mohell N, et al (1989) The beta-adrenergic radioligand [3H]CGP-12177, generally classified as an antagonist, is a thermogenic agonist in brown adipose tissue. Biochem J 261(2):401–405

    PubMed  CAS  Google Scholar 

  • Muzzin P, Revelli JP, Ricquier D, Meier MK, Assimacopoulos-Jeannet F, Giacobino JP (1989) The novel thermogenic beta-adrenergic agonist Ro 16-8714 increases the interscapular brown-fat beta-receptor-adenylate cyclase and the uncouplingprotein mRNA level in obese (fa/fa) Zucker rats. Biochem J 261(3)721–724

    PubMed  CAS  Google Scholar 

  • Nagase I, Aoki A, Yamamoto M, Yasuda H, Kado S, Nishikawa M, Kugai N, Akatsu T, Nagata N (1997) Lack of association between the Trp64 Arg mutation in the beta 3-adrenergic receptor gene and obesity in Japanese men: a longitudinal analysis. J Clin Endocrin Metabol 82(4)1284–1287.

    CAS  Google Scholar 

  • Nagase I, Yoshida T, Kumamoto K, Umekawa T, Sakane N, Nikami H, Kawada T, Saito M (1996) Expression of uncoupling protein in skeletal muscle and white fat of obese mice treated with thermogenic ß3-adrenergic agonist. J Clin Invest 97(12)2898–2904

    PubMed  CAS  Google Scholar 

  • Nahmias C, Blin N, Elalouf J-M, Mattei MG, Strosberg AD, and Emorine LJ (1991) Molecular characterization of the mouse B3-adrenergic receptor: relationship with the atypical receptor of adipocytes. EMBO Journal 10(12)3721–3727

    PubMed  CAS  Google Scholar 

  • Nougues J, Reyne Y, Champigny O, Holloway B, Casteilla L, Ricquier D (1993) The beta 3-adrenoceptor agonist ICI-D7114 is not as efficient on reinduction of uncoupling protein mRNA in sheep as it is in dogs and smaller species. J Anim Sci 71(9)2388–2394

    PubMed  CAS  Google Scholar 

  • Onai T, Kilroy G, York DA, Bray GA (1995) Regulation of beta 3-adrenergic receptor mRNA by sympathetic nerves and glucocorticoids in BAT of Zucker obese rats. Am J Physiol 269(3 Pt 2):R519–R526

    PubMed  CAS  Google Scholar 

  • Pak MD, Fishman PH (1996) Anomalous behavior of CGP 12177A on beta 1-adrenergic receptors. J Recept Signal Transduct Res 16(l-2):l–23

    Google Scholar 

  • Pepperl DJ, Regan JW (1993) Selective coupling of alpha 2-adrenergic receptor subtypes to cyclic AMP-dependent reporter gene expression in transiently transfected JEG-3 cells. Mol Pharmacol 44(4)802–809

    PubMed  CAS  Google Scholar 

  • Piétri-Rouxel F, Lenzen G, Kapoor A, Drumare M-F, Archimbault P, Donny Strosberg A, Manning BS (1995) Molecular cloning and pharmacological characterization of the bovine ß3-adrenergic receptor. Eur J Biochem 230:350–358

    PubMed  Google Scholar 

  • Piétri-Rouxel F, Manning BS, Gros J, Donny Strosberg A (1997) The biochemical effect of the naturally occurring Trp64 Arg mutation on human β3-adrenoceptor activity. Eur J Biochem 247:1174–1179

    PubMed  Google Scholar 

  • Revelli JP, Muzzin P, Giacabino J-P (1992) Modulation in vivo of β-adrenergic receptor subtypes in rat brown adipose tissue by the thermogenic agonist RO 16-8714. Biochem J 286:743–746

    PubMed  CAS  Google Scholar 

  • Rothwell NJ, Stock MJ, Tedstone AE (1987) Effects of ciglitazone on energy balance, thermogenesis and brown fat activity in the rat. Mol Cell Endocrinol 51:253–257

    PubMed  CAS  Google Scholar 

  • Rubenstein RC, Linder ME, Ross EM (1991) Selectivity of the beta-adrenergic receptor among Gs, Gi’s, and Go: assay using recombinant alpha subunits in reconstituted phospholipid vesicles. Biochemistry 30(44)10769–10777

    CAS  Google Scholar 

  • Santti E, Rouvari T, Rouru J, Huupponen R, Koulu M (1994) Effect of chronic treatment with ICI D7114, a selective beta 3-adrenoceptor agonist, on macronutrient selection and brown adipose tissue thermogenesis in Sprague-Dawley rats. Pharmacol Toxicol 75(3-4):166–169

    Google Scholar 

  • Seydoux J, Assimacopoulos-Jeannet F, Jeanrenaud B, Girardier L (1982) Alterations of brown adipose tissue in genetically obese (ob/ob) mice. I. Demonstration of loss of metabolic response to nerve stimulation and catecholamines and its partial recovery after fasting or cold adaptation. Endocrinology 110(2)432–438

    PubMed  CAS  Google Scholar 

  • Shimizu M, Blaak EE, Lonnqvist, Gafvels ME, Arner P (1996) Agonist and antagonist properties of beta 3-adrenoceptors in human omental and mouse 3T3-L1 adipocytes. Pharmacol Toxicol 78(4)254–263

    PubMed  CAS  Google Scholar 

  • Silver K, Walston J, Wang Y, Dowse G, Zimmet P, Shuldiner AR (1996) Molecular scanning for mutations in the beta 3-adrenergic receptor gene in Nauruans with obesity and noninsulin-dependent diabetes mellitus. J Clin End Met 81(11)4155–4158

    CAS  Google Scholar 

  • Staehelin M, Simons P, Jaeggi K, Wigger N (1983) CGP-12177. A hydrophilic betaadrenergic receptor radioligand reveals high affinity binding of agonists to intact cells. J Biol Chem 258(6)3496–3502

    PubMed  CAS  Google Scholar 

  • Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nurnberg B, et al (1995) Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269(5224)690–693

    PubMed  CAS  Google Scholar 

  • Strickland S, Loeb JN (1981) Obligatory separation of hormone binding and biological response curves in systems dependent upon secondary mediators of hormone action. Proc Natl Acad Sci USA 78(3)1366–1370

    PubMed  CAS  Google Scholar 

  • Sunahara RK, Dessauer CW, Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36:461–480

    PubMed  CAS  Google Scholar 

  • Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB, Harper ME, Himms-Hagen J, Flier JS, Lowell BB (1995) Targeted disruption of the beta 3-adrenergic receptor gene. J Biol Chem 270(49)29483–29492

    PubMed  CAS  Google Scholar 

  • Tai TAC, Jenrmann C, Brown KK, Oliver BB, MacGinnitie MA, Wilison WO, Brown HR, Lehmann JM, Kliewer SA, Morris DC, Graves RA (1996) Activation of the nuclear receptor peroxisome proliferator-activated receptor gamma promotes brown adipocyte differentiation. J Biol Chem 271:29909–29914

    PubMed  CAS  Google Scholar 

  • Tavernier G, Barbe P, Galitzky J, Berlan M, Caput D, Lafontan M, Langin D (1996) Expression of beta 3-adrenoceptors with low lipolytic action in human subcutaneous white adipocytes. J Lipid Res 37(l)87–97

    PubMed  CAS  Google Scholar 

  • Thurlby PL, Ellis RDM (1985) Differences between the effects of noradrenaline and the B-adrenoceptor agonist BRL 28410 in brown adipose tissue and hind limb of the anaesthetized rat. Can J Physiol Pharmacol 64:1111–1114

    Google Scholar 

  • Toubro S, Astrup A (19956) The selective β3 agonist ZD 2079 stimulates 24-hour energy expenditure through increased fidgeting. A 14 day, randomized placebo-controlled study in obese subjects. Int J Obes 19:070 (abstr)

    Google Scholar 

  • Urhammer SA, Clausen JO, Hansen T, Pedersen O (1996) Insulin sensitivity and body weight changes in young white carriers of the codon 64 amino acid polymorphism of the beta 3-adrenergic receptor gene. Diabetes 45(8)1115–1120

    PubMed  CAS  Google Scholar 

  • Van Liefde I, Van Ermen A, Vauquelin G (1994) No functional atypical betaadrenergic receptors in human omental adipocytes. Life Sci 54(12):PL209–PL214

    PubMed  Google Scholar 

  • Van Spronsen A, Nahmias C, Krief S, Briend-Sutren M-M, Donny Strosberg A, Emorine LJ (1993) The promoter and intron/exon structure of the human and mouse ß3-adrenergic-receptor genes. Eur J Biochem 213:1117–1124

    PubMed  Google Scholar 

  • Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB (1997) UCP3: An uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Comm 235:79–82

    PubMed  CAS  Google Scholar 

  • Viguerie-Bascands N, Bousquet-Melou A, Galitzky J, Larrouy D, Ricquier D, Berlan M, Casteilla L (1996) Evidence for numerous brown adipocytes lacking functional beta 3-adrenoceptors in fat pads from nonhuman primates. J Clin Endocrinol Metab 81(l)368–375

    PubMed  CAS  Google Scholar 

  • Walston J, Lowe A, Silver K, Yang Y, Bodkin NL, Hansen BC, Shuldiner AR (1997) The beta 3-adrenergic receptor in the obesity and diabetes prone rhesus monkey is very similar to human and contains arginine at codon 64, Gene 188(2)207–213

    PubMed  CAS  Google Scholar 

  • Wheeldon NM, McDevitt DG, Lipworth BJ (1993) Do β 3-adrenoceptors mediate metabolic responses to isoprenaline. Quart J Med 86:595–600

    PubMed  CAS  Google Scholar 

  • Wheeldon NM, McDevitt DG, McFarlane LC, Lipworth BJ (1993) β-Adrenoceptor subtypes mediating the metabolic effects of BRL 35135 in man. Clin Sci 86: 331–337

    Google Scholar 

  • Widén E, Lehto M, Kanninen T, Walston J, Shuldiner AR, Groop LC (1995) Association of a Polymorphism in the β 3-Adrenergic-Receptor Gene with Features of the Insulin Resistance Syndrome in Finns. N Engl J Med 333(6)348–351

    PubMed  Google Scholar 

  • Wilson S, Chambers JK, Park JE, Ladurner A, Cronk DW, Chapman CG, Kallender H, Browne MJ, Murphy GJ, Young PW (1996) Agonist potency at the cloned human beta-3 adrenoceptor depends on receptor expression level and nature of assay. J Pharmacol Exp Ther 279(1)214–221

    PubMed  CAS  Google Scholar 

  • Wilson S, Thurlby PL, Arch JRS (1986) Substrate supply for thermogenesis induced by the B-adrenoceptor agonist BRL 26830A. Can J Physiol Pharmacol 65:113–119

    Google Scholar 

  • Wojtczak L, Schonfeld P (1993) Effect of fatty acids on energy coupling processes in mitochondria. Biochem Biophys Acta 1183(l)41–57

    PubMed  CAS  Google Scholar 

  • Xiao RP, Ji X, Lakatta EG (1995) Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol 47(2)322–329

    PubMed  CAS  Google Scholar 

  • Yen TT (1984) The antiobesity and metabolic activities of LY79771 in obese and normal mice. Int J Obes 8(l)69–78

    PubMed  CAS  Google Scholar 

  • Young P, Cawthorne MA, Smith SA (1985) Brown adipose tissue is a major site of glucose utilisation in C57B1/6 ob/ob mice treated with a thermogenic betaadrenoceptor agonist. Biochem Biophys Res Commun 130(1 )241–248

    PubMed  CAS  Google Scholar 

  • Zhang Y, Wat N, Stratton IM, Warren-Perry MG, Orho M, Groop L, Turner RC (1996) UKPDS 19: heterogeneity in NIDDM: separate contributions of IRS-1 and beta 3-adrenergic receptor mutations to insulin resistance and obesity respectively with no evidence for glycogen synthase gene mutations. Diabetologia 39(12)1505–1511

    PubMed  CAS  Google Scholar 

  • Zhou YY, Cheng H, Bogdanov KY, Hohl C, Altschuld R, Lakatta EG, Xiao RP (1997) Localized cAMP-dependent signaling mediates beta 2-adrenergic modulation of cardiac excitation-contraction coupling. Am J Physiol 272(3 Pt 2)H1611–H1618

    Google Scholar 

  • Zilberfarb V, Pietri-Rouxel F, Jockers R, Krief S, Delouis C, Issad T, Donny Strosberg A (1997) Human immortalized brown adipocytes express functional β 3-fcadrenoceptor coupled to lipolysis. J Cell Sci 110:801–807

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Granneman, J.G. (2000). β3 Adrenergic Receptors as a Therapeutic Target for Obesity. In: Lockwood, D.H., Heffner, T.C. (eds) Obesity: Pathology and Therapy. Handbook of Experimental Pharmacology, vol 149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59651-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59651-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64070-4

  • Online ISBN: 978-3-642-59651-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics