Skip to main content

Schizophrenie: Die neurobiologische Entwicklungshypothese

  • Chapter
Psychiatrie der Gegenwart 5

Zusammenfassung

Kraepelin faßte die Schizophrenie als eine frühzeitige Demenz auf, die in der 2. oder 3. Lebensdekade auftritt und sich im Verlauf der Erkrankung verschlechtert (Kraepelin 1899). Sowohl Bleuler (1911) als auch Kraepelin (1899) stellten fest, daß Eigenschaften wie etwa Verschlossenheit, Zurückgezogenheit oder Reizbarkeit bei manchen schizophrenen Patienten bereits im Kindesalter auftraten und der Erkrankung vorausgingen. Aufgrund des vorherrschenden biologischen Blickwinkels war man jedoch der Ansicht, daß die Schizophrenie auf einem pathologischen degenerativen Prozefß beruht, der im frühen Erwachsenenalter, kurz vor dem Ausbruch der manifesten Symptome, beginnt. Es wurde allgemein angenommen, daß in den meisten Fällen von einem primär nicht oder nur wenig von der Norm abweichenden Zustand des Gehirns auszugehen ist und daß die pathologischen Veränderungen sich mit fortschreitender Krankheit verstärken (Weinberger 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abercrombie ED, Keefe KA et al. (1989) Differential effects of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial prefrontal cortex. J Neurochem 52: 1655 – 1658

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S, Bunney WE, Potkin SG et al. (1993a) Altered distribution of nicotine-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbance of cortical development. Arch Gen Psychiatry 50: 169 – 177

    CAS  Google Scholar 

  • Akbarian S, Vinuela A, Kim JJ et al. (1993b) Distorted distribution of nicotine-adenine dinucleotide phosphate-diaphorase cells in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 50: 178 – 187

    CAS  Google Scholar 

  • Akil M, Lewis DA (1997) Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry 154: 1010 – 1012

    PubMed  CAS  Google Scholar 

  • Andreasen NC, Flashman L, Flaum M et al. (1994a) Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging. JAMA 272: 1763 – 1769

    Article  CAS  Google Scholar 

  • Andreasen NC, Arndt S, Swayze V 2nd et al. (1994b) Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266: 294 – 298

    Article  CAS  Google Scholar 

  • Anderson SA, Classey JD, Conde F et al. (1995) Synchronous development of pyramidal neuron dendritic spines and parvalbumin immuno-reactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex. Neuroscience 67: 19 – 22

    Article  Google Scholar 

  • Arnold SE, Hyman BT, Van Hoesen GW, Damasio AR (1991) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48: 625 – 632

    PubMed  CAS  Google Scholar 

  • Bachneff SA (1991) Positron emission tomography and magnetic resonance imaging: a review and a local circuit neurons hypo (dys) function hypothesis of schizophrenia. Biol Psychiatry 30: 857 – 886

    Article  PubMed  CAS  Google Scholar 

  • Bartley AJ, Jones DW, Torrey EI et al. (1993) Sylvian fissure asymmetries in monozygotic twins: a test of laterality in schizophrenia. Biol Psychiatry 34: 869 – 874

    Article  Google Scholar 

  • Benes FM, Sorensen I, Bird ED (1991a) Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull 17: 597 – 608

    CAS  Google Scholar 

  • Benes FM, McSparren J, Bird ED et al. (1991b) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 48: 996 – 1001

    CAS  Google Scholar 

  • Bleuler E (1911) Dementia praecox oder die Gruppe der Schizophrenien. Springer, Berlin

    Google Scholar 

  • Bogerts B, Meertz E, Schonfeldt-Bausch R (1985) Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry 42: 784 – 791

    PubMed  CAS  Google Scholar 

  • Bogerts B, Ashtari M, Degreef G et al. (1990) Reduced temporal limbic structure volumes on magnetic resonance images in first-episode schizophrenia. Psychiatr Res Neuroimaging 35: 1 – 13

    Article  CAS  Google Scholar 

  • Bracha HS, Torrey EF, Gottesman II et al. (1992) Second-trimester markers of fetal size in schizophrenia: a study of monozygotic twins. Am J Psychiatry 149: 1355 – 1361

    PubMed  CAS  Google Scholar 

  • Bunney WE, Akbarian S et al. (1993) Gene expression for glutamatergic acid decarboxylase is reduced in prefrontal cortex of schizophrenics. Neurosci Abs 19: 199

    Google Scholar 

  • Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 1: 86 – 93

    Article  PubMed  CAS  Google Scholar 

  • Conrad AJ, Abebe T, Austin R et al. (1991) Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. Arch Gen Psychiatry 48: 413 – 417

    PubMed  CAS  Google Scholar 

  • Crow TJ, Done DJ (1992) Prenatal exposure to influenza does not cause schizophrenia. Br J Psychiatry 161: 390 – 393

    Article  PubMed  CAS  Google Scholar 

  • Crow TJ, Ball J, Bloom SR et al. (1989) Schizophrenia as an anomaly of development of cerebral asymmetry. A post-mortem study and a proposal concerning the genetic basis of the disease. Arch Gen Psychiatry 46: 1145 – 1150

    PubMed  CAS  Google Scholar 

  • Daniel DG, Weinberger DR, Jones DW et al. (1991) The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci 11: 1907 – 1917

    PubMed  CAS  Google Scholar 

  • Davis JO, Bracha HS (1996) Famine and schizophrenia: first-trimester malnutrition or second-trimester beriberi. Biol Psychiatry 40: 1 – 3

    Article  PubMed  CAS  Google Scholar 

  • Deutch AY (1992) The regulation of subcortical dopamine systems by the prefrontal cortex: interactions of central dopamine systems and the pathogenesis of schizophrenia. J Neural Transm [Suppl] 36: 61 – 69

    CAS  Google Scholar 

  • Done DJ, Crow TJ, Johnstone EC, Sacker A (1994) Childhood antecendents of schizophrenia and affective illness: social adjustment at ages 7 and 11. Br Med J 309: 699 – 703

    CAS  Google Scholar 

  • Falkai P, Bogerts B (1995) The neuropathology of schizophrenia. In: Hirsch SR, Weinberger DR (eds) Schizophrenia. Blackwell, Oxford, PP 477 – 493

    Google Scholar 

  • Feinberg I (1982–1983) Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 17:319–334

    Google Scholar 

  • Freud S (1893) Zur Kenntnis der cerebralen Diplegien des Kindesalters. (Gesammelte Werke, Bd 1, Fischer, Frankfurt am Main, 1977, S 477 – 479 )

    Google Scholar 

  • Goodman R (1988) Are complications of pregnancy and birth causes of schizophrenia? Dev Med Child Neurol 30: 391 – 395

    Article  PubMed  CAS  Google Scholar 

  • Gruzelier J, Seymour K, Wilson L, Jolley A, Hirsch S (1988) Impairments on neuropsychologic tests of temporohippocampal and frontohippocampal functions and word fluency in remitting schizophrenia and affective disorders. Arch Gen Psychiatry 45 (7): 623 – 629

    PubMed  CAS  Google Scholar 

  • Hecker E (1871) Die Hebephrenia. Arch Pathol Anat Physiol Klin Med 52: 394

    Article  Google Scholar 

  • Heckers S, Heinsen H, Heinsen YC, Beckmann H (1990) Limbic structures and lateral ventricle in schizophrenia. Arch Gen Psychiatry 47: 1016 – 1022

    PubMed  CAS  Google Scholar 

  • Heinsen H, Gössmann E (1996) Variability in the human entorhinal region may confound neuropsychiatrie diagnoses. Acta Anat 157: 226 – 237

    Article  PubMed  CAS  Google Scholar 

  • Heinz A, Saunders RC, Kolachana BS et al. (1999) Disinhibition of subcortical dopaminergic neurotransmission in rhesus monkeys with neonatal mesial temporal lesions. Synapse 32: 71 – 79

    Article  PubMed  CAS  Google Scholar 

  • Hyde TM, Saunders RC (1991) The entorhinal cortex in humans: a cytoarchitectonic and comparative study with non-human primates. Neurosci Abs 17: 143

    Google Scholar 

  • Jakob H, Beckmann H (1986) Prenatal development disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65: 303 – 326

    Article  PubMed  CAS  Google Scholar 

  • Jones P, Rodgers B, Murray R, Marmot M (1994) Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 344: 1398 – 1402

    Article  PubMed  CAS  Google Scholar 

  • Knable MB, Weinberger DR (1995) Are mental diseases brain diseases? The contribution of neuropathology to understanding of schizophrenic psychoses. Eur Arch Psychiatry Clin Neurosci 245: 224 – 230

    Article  PubMed  CAS  Google Scholar 

  • Kolachana BS, Saunders RC, Weinberger DR (1995) Augmentation of prefrontal cortical monoaminergic activity inhibits dopamine release in the caudate nucleus: an in vivo neurochemical assessment in the rhesus monkey. Neurosci 69: 859 – 868

    Article  CAS  Google Scholar 

  • Kovelman JA, Sheibel AB (1984) A neurohistological correlate of schizophrenia. Biol Psychiatry 19: 1601 – 1621

    PubMed  CAS  Google Scholar 

  • Kraepelin E (1899) Psychiatrie: Ein Lehrbuch für Studierende und Ärzte. Barth, Leipzig

    Google Scholar 

  • Krimer LS, Herman MM, Saunders RC et al. (1997) A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia. Cereb Cortex 7: 732 – 739

    Article  PubMed  CAS  Google Scholar 

  • Kulynych JJ, Vladar K, Fautic BD et al. (1996) Normal asymmetry of the planum temporale in patients with schizophrenia: three-dimensional cortical morphometry with MRI. Br J Psychiatry 166: 742 – 749

    Article  Google Scholar 

  • Lieberman J, Jody D, Geisler S et al. (1993) Time course and biological correlates of treatment response in first-episode schizophrenia. Arch Gen Psychiatry 50: 369 – 376

    PubMed  CAS  Google Scholar 

  • Mednick SA, Machon RA, Huttunen MO, Bonnett D (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45: 189 – 192

    PubMed  CAS  Google Scholar 

  • McNeil (1988) Obstetric factors and perinatal injuries. In: Tsuang MT, Simpson JC (eds) Handbook of schizophrenia, vol 3. Nosology, epidemiology and genetics. Elsevier, Amsterdam, pp 319 – 344

    Google Scholar 

  • Murray RM, Lewis SW et al. (1988) The neurodevelopmental origins of dementia praecox. In: Bebbingen P, McGuffin P (eds) Schizophrenia: the major issues. Heinman, London, pp 90 – 107

    Google Scholar 

  • Myslobodsky MS, Weinberger DR (1987) Brain CT asymmetry in schizophrenia and sighting dominance. In: Takahashi R, Flor-Henry P, Gruzelier J, Niwa S (eds) Cerebral dynamics, laterality and psychopathology. Elsevier, Amsterdam, pp 439 – 448

    Google Scholar 

  • Neumann CS, Grimes K, Walker EF, Baum K (1995) Developmental pathways to schizophrenia: behavioral subtypes. J Abnorm Psychol 104: 558 – 566

    Article  PubMed  CAS  Google Scholar 

  • O’Connell P, Woodruff PWR, Wright I et al. (1997) Developmental insanity or dementia praecox: was the wrong concept adopted? Schizophr Res 23: 97 – 106

    Article  PubMed  Google Scholar 

  • Olney JW, Farber NB (1996) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52: 998 – 1007

    Google Scholar 

  • Owen MJ, Lewis SW, Murray RM (1988) Obstetric complications and schizophrenia: a computed tomographic study. Psychol Med 18: 331 – 339

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241: 170 – 176

    Article  PubMed  CAS  Google Scholar 

  • Raz S, Raz N (1990) Structural brain abnormalities in the major psychoses: a quantitative review of the evidence from computerized imaging. Psychol Bull 108: 93 – 108

    Article  PubMed  CAS  Google Scholar 

  • Reveley AM, Reveley MA, Clifford CA, Murray RM (1982) Cerebral ventricular size in twins discordant for schizophrenia. Lancet ii: 540 – 541

    Google Scholar 

  • Roberts GW (1991) Schizophrenia: a neuropathological perspective. Br J Psychiatry 158: 8 – 17

    Article  PubMed  CAS  Google Scholar 

  • Saunders RC, Kolachana BS et al. (1998) Neonatal lesions of the mediotemporal lobe disrupt prefrontal cortical regulation of striatal dopamine. Nature 393: 169 – 171

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer TE, Harris GJ, Tien AJ et al. (1994) Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry 151: 842 – 848

    PubMed  CAS  Google Scholar 

  • Shenton ME, Kikinis R, Jolesz FA et al. (1992) Abnormalities of the left temporal lobe and thought disorder in schizophrenia. N Engl J Med 327: 604 – 612

    Article  PubMed  CAS  Google Scholar 

  • Suddath RL, Christison GW, Torrey EF et al. (1990) Cerebral anatomical abnormalities in monozygotic twins discordant for schizophrenia. N Engl J Med 322: 789 – 794

    Article  PubMed  CAS  Google Scholar 

  • Susser ES, Lin SP (1992) Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944– 1945. Arch Gen Psychiatry 49 /12: 983 – 988

    PubMed  CAS  Google Scholar 

  • Taber MT, Das S, Fibiger HC (1995) Cortical regulation of dopamine release: mediation via the ventraltegmental area. J Neurochem 65: 1407 – 1410

    Article  PubMed  CAS  Google Scholar 

  • Torrey EF, Taylor EH, Bracha HS et al. (1994a) Prenatal origin of schizophrenia in a subgroup of discordant monozygotic twins. Schizophr Bull 20: 423 – 432

    CAS  Google Scholar 

  • Torrey EF, Bowler AE et al. (1994b) Schizophrenia and manic depression disorders: the biological roots of mental illness as revealed by a landmark study of identical twins. Basic, New York

    Google Scholar 

  • Van Horn JD, McManus JC (1992) Ventricular enlargement in schizoophrenia: a meta-analysis of studies of the ventricular brain ration (VBR). Br J Psychiatry 160: 687 – 697

    Article  PubMed  Google Scholar 

  • Walker E, Lewine R (1990) Prediction of adult-onset schizophrenia from childhood home movies of the patients. Am J Psychiatry 147: 1052 – 1056

    PubMed  CAS  Google Scholar 

  • Walker EF, Savoie T, Davis D (1994) Neuromotor precursors of schizophrenia. Schizophr Bull 20: 441 – 451

    PubMed  CAS  Google Scholar 

  • Walker EF, Lewine R, Neumann L (1996) Childhood behavioral characteristics and adult brain morphology in schizophrenia. Schizophr Res 22: 93 – 101

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660 – 669

    PubMed  CAS  Google Scholar 

  • Weinberger DR (1995) Schizophrenia as neurodevelopmental disorder. In: Hirsch SR, Weinberger DR (eds) Schizophrenia. Blackwell, Oxford, pp 293 – 323

    Google Scholar 

  • Weinberger DR (1996) On the plausibility of “The Neurodevelopmental Hypothesis” of schizophrenia. Neuropsychopharmacology 14:1S–11S

    Google Scholar 

  • Weinberger DR, Lipska BK (1995) Cortical maldevelopment, antipsychotic drugs, and schizophrenia: a search for common grounds. Schizophr Res 16: 87 – 110

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, Torrey EF, Neophytides AN, Wyatt RJ (1979) Lateral cerebral ventricular enlargement in chronic schizophrenia. Arch Gen Psychiatry 36: 735 – 738

    PubMed  CAS  Google Scholar 

  • Weinberger DR, Cannon-Spoor E, Potkin SG et al. (1980) Poor premorbid adjustment and CT scan abnormalities in chronic schizophrenia. Am J Psychiatry 137: 1410 – 1413

    PubMed  CAS  Google Scholar 

  • Zipursky RB, Marsh L, Kom KO et al. (1994) Volumetrie MRI assessment of temporal lobe structures in schizophrenia. Biol Psychiatry 35: 501 – 516

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heinz, A., Weinberger, D.R. (2000). Schizophrenie: Die neurobiologische Entwicklungshypothese. In: Helmchen, H., Lauter, H., Henn, F., Sartorius, N. (eds) Psychiatrie der Gegenwart 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59626-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59626-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64057-5

  • Online ISBN: 978-3-642-59626-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics