Skip to main content

Genetic Transformation of Black Locust (Robinia pseudoacacia L.)

  • Chapter
Transgenic Trees

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 44))

Abstract

Black locust (Robinia pseudoacacia L.), a nitrogen-fixing and multipurpose legume tree species, is planted globally. It has a very rapid rate of growth, 2–6 cm/day (Hanover et al. 1992), and often outcompetes weeds and other vegetation. Unlike many other, fast-growing tree species, which usually have lower wood density, black locust produces decay-resistant wood with a very high wood density, 690kg/m3and higher. Recently, these attributes, in concert with black locust’s tolerance of low fertility sites, drought stress, and capacity for nitrogen fixation, have drawn attention to its potential for use in environmental restoration. In addition, black locust’s relatively small genome size (2.4 pg), amenability to tissue culture, and the relative ease with which it can be manipulated through Agrobacterium-mediated transformation facilitate the use of biotechnological techniques to genetically improve this tree legume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn I-S (1995) The improvement of soil adaptability by PHOS gene transformation in black locust. Master’s thesis, Department of Forestry, Kyungpook National University, Daegu, Korea

    Google Scholar 

  • Arrillaga I, Tobolski JJ, Merkle SA (1994) Advances in somatic embryogenesis and plant production of black locust (Robinia pseudoacacia L.). Plant Cell Rep 13: 171 – 175

    CAS  PubMed  Google Scholar 

  • Ashby WC, Vogel WG, Rogers NF (1985) Black locust in the reclamation equation. USDA For Serv Gen Tech Rep NE US Northeast For Exp Stn 12

    Google Scholar 

  • Baertsche SR, Yokoyama MT, Hanover JVV (1986) Short rotation, hardwood tree biomass as potential ruminant feed-chemical composition, nylon bag ruminal degradation and ensilement of selected species. J Anim Sci 63: 2028 – 2043

    CAS  Google Scholar 

  • Barghchi M (1987) Mass clonal propagation in vitro of Robinia pseudoacacia L. (black locust) cv. Jaszkiseri. Plant Sci 53: 183 – 189

    Article  CAS  Google Scholar 

  • Barrett RP, Mebrahtu T, Hanover JW (1988) Black locust: a multi-purpose tree species for temperate climates. In: Janick J, Simon JE (eds) Advances in new crops. Proc First National Symp New Crops, 23 – 26 Oct, Timber Press Indianapolis, IN, USA

    Google Scholar 

  • Bridgen MR (1992) Plantation silviculture of black locust. In: Hanover JW, Miller K, Plesko S (eds) Black locust: biology, culture, and utilization. Proc Int Conf black locust. 17–21 June 1991, East Lansing, MI, USA, pp 21 – 31

    Google Scholar 

  • Chalupa V (1992) Tissue culture propagation of black locust. In: Hanover JW, Miller K. Plesko S (eds) Black locust: biology, culture, and utilization. Proc Int Conf black locust, 17–21 June 1991, East Lansing, MI, USA, pp 115 – 125

    Google Scholar 

  • Chapman AG (1935) The effects of black locust on associated species with special reference to forest trees. Ecol. Monogr 5: 38 – 50

    Article  Google Scholar 

  • Davis JM, Keathley DE (1985) Regeneration of shoots from leaf disk explants of black locust, Robinia pseudoacacia L. In: Proc 4th North Central Tree Improvement Conf, East Lansing, MI, pp 29 – 34

    Google Scholar 

  • Davis JM, Keathley DE (1987) Differential responses to in vitro bud culture in mature Robinia pseudoacacia L. (black locust). Plant Cell Rep 6: 431 – 434

    CAS  PubMed  Google Scholar 

  • Davis JM, Keathley DE (1989) Detection and analysis of T-DNA in crown gall tumors and kanamycin-resistant callus of Robinia pseudoacacia. Can J For Res 19: 1118 – 1123

    Article  CAS  Google Scholar 

  • Davis JM, Keathley DE (1992) Micropropagation of black locust (Robinia pseudoacacia L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 18: high-tech and micropropagation II. Springer, Berlin Heidelberg New York, pp 25 – 39

    Google Scholar 

  • Fredou C, Pauly T (1974) Peut-on reboiser les de’charges d’ordures menagers? Rev For Fr 26: 81 – 90

    Article  Google Scholar 

  • Han K-H (1991) Agrobacterium rhizogenes-mediated transformation and plant regeneration from normal and transgenic tissues of Robinia pseudoacacia. PhD thesis, Michigan State University, East Lansing, MI, USA, pp 1 – 96

    Google Scholar 

  • Han K-H, Keathley DE (1988) Isolation and culture of protoplasts from callus tissue of black locust (Robinia pseudoacacia L.). Nitrogen Fixing Tree Res Rep 6: 68 – 70

    Google Scholar 

  • Han K-H, Keathley DE (1989) Regeneration of whole plants from seedling-derived callus of black locust. Nitrogen Fixing Tree Res Rep 7: 112 – 114

    Google Scholar 

  • Han K-H, Davis JM, Keathley DE (1990) Differential responses persist in shoot explants regenerated from callus of two mature black locust trees. Tree Physiol 6: 235 – 240

    Article  PubMed  Google Scholar 

  • Han K-H, Keathley DE, Davis JM, Gordon MP (1993a) Regeneration of a transgenic woody legume (Robinia pseudoacacia L., black locust) and morphological alterations induced by Agrobacterium rhizogenes-mediated transformation. Plant Sci 88: 149 – 157

    Article  Google Scholar 

  • Han K-H, Keathley DE, Gordon MP (1993b) Cambial tissue culture and subsequent shoot regeneration from mature black locust (Robinia pseudoacacia L.). Plant Cell Rep 12: 185 – 188

    Article  CAS  Google Scholar 

  • Han K-H, Shin D-I, Keathley DE (1997a) Tissue culture responses of explants taken from branch sources with different degrees of juvenility in mature black locusts (Robinia pseudoacacia L.). Tree Physiol 17: 671 – 675

    Article  Google Scholar 

  • Han K-H, Gordon MP, Strauss SH (1997b) High frequency transformation of cottonwoods (genus Populus) by Agrobacterium rhizogenes. Can J For Res 27: 464 – 470

    Article  Google Scholar 

  • Hanover JW, Miller K, Plesko S (1992) Black locust: an historical and future perspective. In: Hanover JW, Miller K, Plesko S (eds) Black locust: biology, culture, and utilization. Proc Int Conf black locust, 17–21 June 1991, East Lansing, ML, USA pp 7 – 18

    Google Scholar 

  • Hayes B (1976) The black locust as a nectar source. Am Bee J 226: 238

    Google Scholar 

  • Hoffard WH, Anderson RL (1982) A guide to common insects, diseases and other problems of black locust: USDA Forest Service, SA-FR-19

    Google Scholar 

  • Kennedy JM (1983) Geographic variation in black locust (Robinia pseudoacacia L.). MS thesis, University of Georgia

    Google Scholar 

  • Keresztesi B (1983) Breeding and cultivation of black locust, Robinia pseudoacacia, in Hungary. For Ecol Manag 6: 217 – 244

    Google Scholar 

  • Keresztesi B (1988) Black locust: the tree of agriculture. Outlook Agrie 17: 77 – 85

    Google Scholar 

  • Kim CK, Lee SK, Hyun SK (1973) Studies on radiation effect of seeds irradiated by X-ray and thermal neutron and some characteristics of irradiated black locust. Res Rep Inst for Genet 10: 57 – 65

    Google Scholar 

  • Limstrom GA (1960) Forestration of strip-mine land in the Central States. USDA Agr. Handb 166:74

    Google Scholar 

  • Mebrahtu T, Hanover JW (1989) Heritability and expected gain estimates for traits of black locust in Michigan. Silvae Genet 38:125-130

    Google Scholar 

  • Merkle SA, Wiecko AT (1989) Regeneration of Robinia pseudoacacia via somatic embryogenesis. Can J For Res 19:285-288

    Article  Google Scholar 

  • Miller RO, Bloese PD, Hanover JW (1987) Black locust: a superior short-rotation intensive-culture species for biomass production in the lake states. In: Proc Inst Gas Tech 11th Annl Mtg on Energy from Biomass and Wastes, 16 March 1987, Orland, FL, USA

    Google Scholar 

  • Murashige T, Skoog F(1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473-479

    Article  CAS  Google Scholar 

  • Park YG (1996) The prospects for the utilization of Robinia pseudoacacia in Korea. Kor J Apicult 11:27-56

    Google Scholar 

  • Schmulling T, Fladung M, Grossmann K, Schell J (1993) Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenes T-DNA. Plant J 3:371-382

    Article  Google Scholar 

  • Smith AL, Campbell CL, Walker DB, Hanover JW (1989) Extracts from black locust as wood preservatives: extraction of decay resistance from black locust heart wood. Holzforschung 43:293-296

    Article  CAS  Google Scholar 

  • Stomp AM, Han KH, Wilbert S, Gordon MP (1993) Genetic improvement of tree species for remediation of hazardous wastes. In Vitro Cell Dev Biol Plant 29p:227-232

    Article  Google Scholar 

  • Stomp A-M, Han K-H, Wilbert S, Gordon MP, Cunningham SD (1994) Genetic strategies for enhancing phytoremediation. Ann NY Acad Sci 721:481-491

    Article  CAS  PubMed  Google Scholar 

  • Stringer JW, Carpenter SB (1982) Energy content of black locust growing on surface mined land (Robinia pseudoacacia). In: 1982 Symp Surface Mining, Hydrology, Sedimentology, and Reclamation, Office of Engineering Serv., College of Engineering, University of Kentucky, pp 243–248

    Google Scholar 

  • Wendi L (1987) Site conditions and selection of tree species for seaboard afforestration in Jiangsu province. J Nanjing For Univ 1:71-79

    Google Scholar 

  • Woo JH, Choi MS, Park YG (1995a) Plant regeneration from callus cultures of black locust (Robinia pseudoacacia L.). J. Kor For Soc 84:145-150

    Google Scholar 

  • Woo JH, Choi MS, Joung EY, Chung WI, Jo JK, Park YG (1995b) Improvement of black locust (Robinia pseudoacacia L.) through tissue culture. I. Micropropagation and somatic embryo-genesis. J Kor For Soc 84:41-47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Han, KH., Gordon, M.P., Keathley, D.E. (2000). Genetic Transformation of Black Locust (Robinia pseudoacacia L.). In: Bajaj, Y.P.S. (eds) Transgenic Trees. Biotechnology in Agriculture and Forestry, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59609-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59609-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64049-0

  • Online ISBN: 978-3-642-59609-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics