Skip to main content

Genetic Transformation of Pinus radiata

  • Chapter
Transgenic Trees

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 44))

Abstract

Pinus radiata is the main forest tree species planted in commercial forestry in New Zealand and has been grown for more than 100-years. It was originally introduced from California and an intensive tree improvement program, which started in the early 1950s, has concentrated on better growth rate, stem form, and lack of stem cones on the lower stem. Clonal seed orchards were established to translate the genetic improvements into trees in the forest. A range of traditional breeding technologies were used and significant genetic gains were made, leading to a forest tree species which delivers high quality timber for a variety of applications, in less than a 30 year growth cycle (Carson et al. 1990). However, a number of desirable traits such as resistance to insects and pathogens or herbicides, or changes in content or composition of lignin or cellulose are not readily available in the breeding population. Recently, however, genetic transformation techniques have been applied to forest trees, resulting for instance in transgenic poplar with altered lignin content or herbicide resistance. In the past few years, the first transgenic conifers were produced (Ellis et al. 1993; Charest et al. 1996; Walter et al 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken-Christie J, Thorpe TA (1984) Clonal propagation of gymnosperms. In: Vasil IK (ed) Proc FRI/NZFP Forests Ltd clonal foresti!« workshop. NZ Ministry of Forestry. Forest Res Inst Bull 160: 82 – 95

    Google Scholar 

  • Bekkaoui F, Datla RSS, Pilon M, Tautorus TE, Crosby WL, Dunstan DI (1990) The effects of promoter on transient expression in conifer cell lines. Theor Appl Genet 79: 353 – 359

    Article  CAS  PubMed  Google Scholar 

  • Bergmann BA, Stomp A-M (1994) Family and clonal variation in susceptibility of Pinus radiatato Agrobacterium tumefaciensin relation to in vitro shoot growth rale. N Z J For Sci 24: 3 – 10

    Google Scholar 

  • Bourque JE (1995) Antisense strategies for genetic manipulations in plants. Plant Sci 105: 125 – 149

    Article  CAS  Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition. Plant Physiol 110: 3 – 13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carson MJ, Burdon RD, Carson SD, Firth A, Shelbourne CJA. Vincent TG (1990) Realising genetic gains in production forests. Paper 3.1 In: Breeding and genetic resources: Proc Joint Meet Western Forest Genetics Association and IUFRO Working Parties S2.02.05, S2.02.06, S2.02.12 and S2.02.14 on Douglas-fir, Contorta Pine, Sitka Spruce, and Abies, Breeding and Genetic Resources, Olympia, Washington, USA, Aug 1990. FRI reprint no 2367

    Google Scholar 

  • Carson MJ, Vincent TG, Firth A (1992) Control-pollinated and meadow seed orchards of radiata pine. Proc AFOCEL meeting Mass production technology for genetically improved fast growing forest tree species Bordeaux, 1992. FRI reprint no 2453, pp 13 – 20

    Google Scholar 

  • Charest PJ (1996) Biotechnology in forestry: examples from the Canadian Forest Service. For Chron 72 (l): 37 – 45

    Google Scholar 

  • Cornejo M-J, Luth D, Blankenship KM, Anderson OD, Biechi AE (1993) Activity of a maizeubiquitin promoter in transgenic rice. Plant Mol Biol 23: 567 – 581

    Article  CAS  PubMed  Google Scholar 

  • Davenhill NA, Ray JW, Vanner AL (1994) Forest weed control manual — a guide to herbicide use in forests. New Zealand Forest Research Institute, FRI Bull no 180. ISSN: 0111 – 8129

    Google Scholar 

  • De Block M, Botterman J, Vandewìele M, Dockx J, Thoen C, Gosselé, Rao Movva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513 – 2518

    CAS  PubMed  Google Scholar 

  • Dwivedi UN, Campbell WH, Yu J, Dalta RSS, Bugos RC, Chiang VL, Podila GK (1994) Modification of lignin biosynthesis in transgenic Nicotianathrough expression of an antisense O-methyltransferase gene from Populus. Plant Mol Biol 26: 61 – 71

    Article  CAS  PubMed  Google Scholar 

  • Ellis D, Roberts D, Sutton B, Lazaroff W, Webb D, Flinn B (1989) Transformation of white spruce and other conifer species by Agrobacterium tumefaciens. Plant Cell Rep 8: 16 – 20

    Article  CAS  PubMed  Google Scholar 

  • Ellis DD, McCabe D, Russell D, Martinell B, McCown BH (1991) Expression of inducible angiosperm promoters in a gymnosperm, Picea glauca(white spruce). Plant Mol Biol 17: 19 – 27

    Article  CAS  PubMed  Google Scholar 

  • Ellis DD, McCabe DE, Mclnnis S, Ramachandran R, Russell DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF, McCown BH (1993) Stable transformation of Picea glaucaby particle acceleration. Bio/Technology 11: 84 – 89

    Article  CAS  Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Haissig B, Comai L (1987) Agrohacterium-mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199

    Article  CAS  Google Scholar 

  • Gibson IAS (1972) Dothistromablight of Pinus radiata. Annu Rev Phytopathol 10:51–72

    Article  Google Scholar 

  • Guilley H, Dudley RK, Jonard G, Balaes E, Richrads KE (1982) Transcription of Cauliflower Mosaic Virus DNA: detection of promoter sequences and characterisation of transcripts. Cell 30: 763 – 773

    Article  CAS  PubMed  Google Scholar 

  • Halpin C, Knight ME, Foxon GA, Campbell MM, Boudet AM, Boon JJ, Chabbert B, Tollier M-T, Schuch W (1994) Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant J 6 (3): 339 – 350

    Article  CAS  Google Scholar 

  • Holland L, Gemmell JE, Charity JA, Walter C (1998) Foreign gene transfer into Pinus radiataadventitious shoot forming meristems using Agrobacterium tumefaciens. N Z J For Sci: 27 (3): 289 – 304

    Google Scholar 

  • Hood EE, Fraley RT, Chilton M-D (1987) Virulence of Agrobacterium tumefaciensstrain A281 on legumes. Plant Physiol 83: 529 – 534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horgan K, Aitken J (1981) Reliable plantlet formation from embryos and seedling shoot tips of radiata pine. Physiol Plant 53: 170 – 175

    Article  CAS  Google Scholar 

  • Huang Y, Diner AM, Karnosky DF (1991) Agrobacierium rhizogenesmediated genetic transformation and regeneration of a conifer: Larix decidua. Io Vitro Cell Dev Bio 27:201–207

    Google Scholar 

  • Janssen BJ, Gardner RC (1989) Localised transient expression of gus in leaf discs following cocultivation with Agrobacierium. Plant Mol Biol 14: 61 – 72

    Article  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 230: 1299 – 1302

    Article  Google Scholar 

  • Kozak M (1989) The scanning model for translation: an update. I Cell Biol 109: 229 – 241

    Article  Google Scholar 

  • Last DI, Bretteil RIS, Chamberlain AM, Chaudhury AM, Larking PI, Marsh EL, Peacock WJ, Dennis ES (1991) pEmu: an improved promoter for gene expression in cereal cells. Theor Appi Genet 81:581–588

    Article  CAS  Google Scholar 

  • Levee V, Lelu M-A, Jouanin L, Cornu D, Pilata G (1997) Agrobacierium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi x L. decidua) and transgenic plant regeneration. Plant Cell Rep 16:680–685

    Article  CAS  Google Scholar 

  • Liebhold AM, MacDonald WL, Bergdahl D, Mastro VC (1995) Invasion by exotic forest pests: a threat to forest ecosystems. Forest Science Monograph 30, ii + 49 PP For Sci [Suppl] 41 (2)

    Google Scholar 

  • Loopstra CA, Stomp A-M, Sederoff R (1990) Agrobacierium-mediated DNA transfer in sugar pine. Plant Mol Biol 15:1–9

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107: 679 – 685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazur BJ, Chui C-F, Smith JK (1987) Isolation and characterisation of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol 85: 1110 – 1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mett VL, Lochhead LP, Reynolds PHS (1993) Copper controllable gene expression system for whole plants. Proc Natl Acad Sci USA 90: 4567 – 4571

    Article  CAS  PubMed  Google Scholar 

  • Mellerowicz EJ (1998) PRFLL – a Pinus radiatahomologue of Floriculaand Leafyis expressed in buds containing vegetative shoot and undifferentiated male cone primordia. Planta 206: 619 – 629

    Article  CAS  PubMed  Google Scholar 

  • Meyer P (1995) Variation of transgene expression in plants. Euphytica 85: 359 – 366

    Article  CAS  Google Scholar 

  • Morris JW, Castle LA, Morris RO (1989) Efficacy of different Agrobacierium tumefaciensstrains in transformation of pinaceous gymnosperms. Physiol Mol Plant Pathol 34: 451 – 461

    Article  Google Scholar 

  • Sederoff R, Stomp A-M, Scott Chilton W; Moore LW (1986) Gene transfer into loblolly pine by Agrobacierium tumefaciens. Biotechnology 4: 647 – 649

    Article  CAS  Google Scholar 

  • Sharma P, Lönneborg A (1996) Isolation and characterization of a cDNA encoding a plant defensin-like protein from roots of Norway spruce. Plant Mol Biol 31: 707 – 712

    Article  CAS  PubMed  Google Scholar 

  • Shelbourne CJA, Carson MX Wilcox MD (1989) New techniques in the genetic improvement of radiata pine. Commonwealth For Rev 68:3 Smith DR (1996) Growth medium US patent number: 5,565, 355

    Google Scholar 

  • Strauss SH, Rottmann WH, Brunner AM, Sheppard LA (1995) Genetic engineering of reproductive sterility in forest trees. Mol Breed 1: 5 – 26

    Article  CAS  Google Scholar 

  • Swadener C (1992) The Asian gypsy moth comes to the Pacific Northwest. J Pestic Reform 12: 24 – 25

    Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39: 47 – 79

    Article  Google Scholar 

  • Toepfer R, Proels M, Schell J, Steinbiss H-H (1988) Transient gene expression in tobacco protoplasts: II. Comparison of the reporter gene system for CATJ,NPT II and GUS. Plant Cell Rep 7: 225 – 228

    Article  CAS  Google Scholar 

  • Toki S, Takamatsu S, Nojiri C, Oooba S, Anzai H, Iwata M, Christensen AH, Quail PH, Uchimiya H (1992) Expression of a maize ubiquitin gene promoter-bar chimaeric gene in transgenic rice plants. Plant Physiol 100: 1503 – 1507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tzfira T, Yarnitzky O, Vainstein A, Altman A (1996) Agrobacierium rhizogenes-mediated DNA transfer in Pinus halepensismill. Plant Cell Rep 16:26–31

    Article  CAS  PubMed  Google Scholar 

  • Wagner A, Walden A, Walter C (1996) A cDNA encoding a tinnamyl alcohol dehydrogenase (Genbank Accession no U62394 and U70873) from Pinus radiata. Plant Gene Register PGR96-097. Plant Physiol 112: 1397

    Article  Google Scholar 

  • Walden AR, Gardner RC, Walter C (1997) Submissions of Pinus radiatamale cone specific genes to the GenBank database. Accession numbers: U90345, U90346, U90347, U90348, U90349, U90344

    Google Scholar 

  • Walden AR, Gardner RC, Walter C (1997) Submissions of Pinus radiatamale cone specific genes to the GenBank database. Accession numbers: U90345, U90346, U90347, U90348, U90349, U90344

    Google Scholar 

  • Walter C, Broer I, Hillemann D, Pühler A (1992) High frequency; heat treatment-induced inactivation of the phosphinothricin resistance gene in transgenic single cell suspension cultures of Medicago sativa. Mol Gen Genet 235: 189 – 196

    Article  CAS  PubMed  Google Scholar 

  • Walter C, Smith DR, Connett MB, Grace L, White DWR (1994) A biolistie® approach for the transfer and expression of a gusreporter gene in embryogenie cultures of Pinus radiata. Plant Cell Rep 14: 69 – 74

    CAS  PubMed  Google Scholar 

  • Walter C, Grace LJ, Wagner A, White DWR, Waiden AR, Donaldson SS, Hinton H, Gardner RC, Smith DR (1998) Stable transformation and regeneration of transgenic plants of Pinus radiataD Don. Plant Cell Rep 17: 460 – 468

    Article  CAS  Google Scholar 

  • Wang DY, Bradshaw RE, Walter C, Connett MB, Fountain DW (1998) Structural chracterisation of Pinus radiataMADS box DNA sequences isolated by PCR cloning. N Z J For Sci 27 (1): 3 – 10

    Google Scholar 

  • Wehrmann A, Van Vliet A, Opsomer C, Botterman J, Schulz A (1996) The similarities of barand patgene products make them equally applicable for plant engineers. Nat Biotechnol 14: 1274 – 1278

    Article  CAS  PubMed  Google Scholar 

  • Whetten R, Sederoff R (1991) Genetic engineering of wood. For Ecol Manage 43: 301 – 316

    Article  Google Scholar 

  • Zhang W, McElroy D, Wu R (1991) Analysis of rice Actl 5’ region activity in transgenic rice plants. Plant Cell 3: 1155 – 1166

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walter, C., Smith, D.R. (2000). Genetic Transformation of Pinus radiata . In: Bajaj, Y.P.S. (eds) Transgenic Trees. Biotechnology in Agriculture and Forestry, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59609-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59609-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64049-0

  • Online ISBN: 978-3-642-59609-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics