Skip to main content

Computation of Hydrological Data for Design of Water Projects in Ungauged River Basins

  • Chapter
Remote Sensing in Hydrology and Water Management

Abstract

Socio-economical development on regional, national and international basis requires intensive investigations of water resources. Water differs from other resources by the time variability of the amount of water available for use at any given moment. Non-standard seasonal distribution of hydrometeorological parameters, their fluctuations from region to region and from basin to basin make the planning of water projects difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, R. F. and R. A. Mack (1984): Thunderstorm Cloud Height-Rainfall Rate Relations for Use with Satellite Rainfall Estimation Techniques. Journal Climate and Applied Meteorology, Vol. 33, pp. 280–296.

    Article  Google Scholar 

  • Arkin, P. A. (1979): The relation between fractional coverage of high cloud and rainfall accumulations during GATE over B-Scale array. Monthly Weather Review, Vol. 107, No. 10, pp. 1382–1387.

    Article  Google Scholar 

  • Barrett, E. C. and D. W. Martin (1981): The Use of Satellite Data in Rainfall Monitoring. Academic Press

    Google Scholar 

  • Green, Jo Anna, L. and V. Koren (1995): Results using a simple weighting method to merge satellite and raingage data in the Blue Nile river basin for input into a distributed hydrological model. Conference on Hydrology, 15–20 January, 1995, Dallas Texas, Published by the American Meteorological Society, Boston, MA, pp. 173–177

    Google Scholar 

  • Griffith, C. G.; W. L. Woodley and P. G. Grube (1978): Rain Estimation from Geosynchronous Satellite Imagery - Visible and Infrared Studies. Monthly Weather Review, Vol. 106, pp. 1153–1171.

    Article  Google Scholar 

  • Griffith, C. G.; J. A. Augustine and W. L. Woodley (1981): Satellite rain estimation in the U.S. High Plains. Journal of Applied Meteorology, Vol. 20, pp. 53–56

    Article  Google Scholar 

  • Griffith, C. G. (1987): The Estimation from Satellite Imagery of Summertime Rainfall over varied Space and Time Scales. NOAA Technical Memorandum ERL ESG - 25, pp. 102.

    Google Scholar 

  • Gyau-Boakye, P. (1993): Filling Gaps in Hydrological Runoff Data Series in West-Africa. Schriftenreihe, Hydrologie/Wasserwirtschaft, Ruhr-Universitat Bochum, Heft 10.

    Google Scholar 

  • Gyau-Boakye, P. (1994): Filling gaps in runoff time series in West Africa. Hydrological Sciences - Journal- des Sciences Hydrologiques, 39, 6, pp. 621–636.

    Article  Google Scholar 

  • Hardy, S.; G. Dugdale; J. R. Milford and J. V. Sutcliffe (1989): The use of satellite derived rainfall estimates as inputs to flow prediction in the River Senegal. IAHS Publ. no. 181, pp. 23–30.

    Google Scholar 

  • Higgins, R.J. (1981): Use and Modification of a Simple Rainfall-Runoff Model for Wet Tropical Catchments. Water Resources Research, Vol. 17, No.2, pp. 423–427.

    Article  Google Scholar 

  • Huygen, J. (1989): Estimation of rainfall in Zambia using Meteosat - TIR data. Report 12, The WINAND STARING CENTRE, Wageningen, The Netherlands

    Google Scholar 

  • Kite, G. W. (1991): Use of satellite data for water resources modelling. A Canadian example. Water Resources Development, Vol. 7, No. 1, pp. 21–29.

    Article  Google Scholar 

  • Kneizys, F. X. et al. (1980): Atmospheric transmittance/radiance: computer code LOWTRAN - 5. AFGL - TR - 80 - 0067, Environmental Res. Papers, No. 697, Air Force Geophys. Lab., Hansom AFG, Mass., U.S.A.

    Google Scholar 

  • Koren, V. and Barrett, E.C. (1994): A satellite based river forecast system for the Nile River. In: “Water policy and management: solving the problems” by D.G. Fontana and H.N. Tuvel (Eds.), Proceedings of the 21st Annual Conference, Denver, CO, pp. 9–12

    Google Scholar 

  • Koren, V. and E.C. Barret (1995): Satellite based distributed monitoring, forecasting, and simulation (MFS) system for the Nile river. Application of Remote Sensing in Hydrology: Proceedings of the second international workshop. NHRI Symposium No. 14, October, 1994, pp. 187–200

    Google Scholar 

  • Krüger, L-R; G. A. Schultz (1982): Ermittlung abflufiwirksamer Niederschlage aus Satellitendaten. Wasserwirtschaft, 72(1), pp. 1–5.

    Google Scholar 

  • Ojo, O (1977): The Climates of West Africa. Heinemann Educational Book Ltd.

    Google Scholar 

  • Papadakis, I. (1994): Berechnung historischer Abfliisse mit Hilfe multispektraler und multitemporaler digitaler Satellitenbilder. Dissertation, November 1993. Schriftenreihe Hydrologie/Wasserwirtschaft, Lehrstuhl fur Hydrologie, Wasserwirtschaft und Umwelttechnik, RuhrUnviversitat Bochum

    Google Scholar 

  • Papadakis, L; J. Napiorkowski; G. A. Schultz (1993): Monthly runoff generation by non-linear model using multispectral and multitemporal satellite imagery. Adv. Space Res. Vol. 13, No. 5, pp. 181–186.

    Article  Google Scholar 

  • Poc, M. M. and M. Roulleau (1983): Water Vapour Fields Deduced from METEOSAT-1 Water Vapour Channel Data. Journal of Climate and Applied Meteorology, Vol. 22, pp. 1628–1636.

    Article  Google Scholar 

  • Rott, H.; A. Aschbacher; K. G. Lenhart (1986): Study on River-Runoff Prediction Based on Satellite Data. European Space Agency, Contract Report, Contract No. 5376/83/D/JS CSC

    Google Scholar 

  • Schaake, J.C. and J. Green-Newby (1993): Satellite Estimation of Rainfall Using the Nile Climatoligcal Method. Nile Technical No. 06, 13 pp

    Google Scholar 

  • Sorooshian, S. (1997): Precipitation estimation from remotely sensed information using artificial neural network models (PERSIAN). GEWEX News, Vol. 7, No. 2

    Google Scholar 

  • Stout, J. E.; D. W. Martin and D. N. Sikdar (1979): Estimating GATE Rainfall with Geosynchronous Satellite Images. Monthly Weather Review, Vol. 107, pp. 585–598.

    Article  Google Scholar 

  • Tiwari, K. N.; P. Kumar; M. Sebastian and D. K. Pal (1991): Hydrologic modelling for runoff determination. Remote sensing techniques. Water Resources Development, Vol. 7, No. 3, pp. 178–184.

    Google Scholar 

  • Turpeinen, O. M. and J. Schmetz (1989): Validation of the Upper Tropospheric Relative Humidity Determined from METEOSAT Data. Journal of Atmospheric and Oceanic Technology, Vol. 6, No. 2, pp. 359–364.

    Article  Google Scholar 

  • Wylie, D. P. (1979): An Application of a Geostationary Satellite Rain Estimation Technique to an Extratropical Area. Journal of Applied Meteorology, Vol. 18, pp. 1640–1648.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Papadakis, I., Schultz, G.A. (2000). Computation of Hydrological Data for Design of Water Projects in Ungauged River Basins. In: Schultz, G.A., Engman, E.T. (eds) Remote Sensing in Hydrology and Water Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59583-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59583-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64036-0

  • Online ISBN: 978-3-642-59583-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics