Advertisement

Chronisch-entzündliche Darmkrankheiten — Epidemiologie und Pathogenese

  • W. F. Caspary
Conference paper
Part of the Deutsche Gesellschaft für Chirurgie book series (DTGESCHIR, volume 2000)

Zusammenfassung

Die Inzidenz der Colitis ulcerosa ist seit Jahren konstant, das Auftreten des Morbus Crohn hat in den letzten Jahrzehnten zugenommen und verharrt momentan auf einem Plateau. Für beide CED existiert ein Nord-Süd-Gefälle. Rauchen ist ein Risikofaktor für den MC, ein protektiver Faktor bei der CU. In der Pathogenese von CED spielen folgende 4 Faktoren eine wichtige Rolle: 1. Genetische Prädisposition, 2. Gestörte Immunregulation der Mukosa, 3. Defekt der Barrierenfunktion, 4. Exogene Faktoren. Die genetische Prädisposition scheint sowohl die Immunreaktion wie auch die Barrierefunktion zu beeinflussen,wobei beide sich auch gegenseitig beeinflussen können. Ein Antigen (z. B. aus normaler Bakterienflora) ist erforderlich, um die Entzündungsantwort auszulösen. Der Verlust an Toleranz gegenüber der eigenen Darmflora trägt zur Fortdauer der CED bei.

Schlüsselwörter

Morbus Crohn Colitis ulcerosa Chronisch-entzündliche Darmkrank-heiten Pathogenese 

Chronic Inflammatory Bowel Diseases — Epidemiology and Pathogenesis

Summary

The incidence of ulcerative colitis (UC) has been fairly constant for many years. The incidence of Crohn‘s disease (CD) has, however, increased in previous decades, reaching a plateau during recent years. In Europe, CD and UC seem to decrease in a north-south direction. Smoking is a rsik factor for CD, but protects against UC. In the pathogenesis of inflammatory bowel disease, four factors are of major importance: (1) genetic predisposition, (2) defective mucosal immunoregulation, (3) disturbed barrier function and (4) exogenous factors. There is a distinct requirement for genetic predisposition, that may account for two of the other factors of disease pathogenesis, namely, defective mucosal immunoregulation and defects in barrier function. Both of these may interact. An antigen is required to trigger the inflammatory response. This antigen may be normal intestinal flora or a common infectious agent. The loss of tolerance to normal mucosal flora might allow for perpetuation of disease.

Key words

Crohn‘s disease Ulcerative colitis Chronic inflammatory bowel disease Pathogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Jewell DP (1998) Ulcerative colitis. In: Gastrointestinal and Liver Disease. Feldman M, Scharschmidt BF, Sleisenger MH ( Hrsg) WB Saunders, Philadelphia 1735–1752Google Scholar
  2. 2.
    Andres PG, Friedman LS (1999) Epidemiology and the natural course of inflammatory bowel disease. Gastroenterol Clin North Am 28: 255–281PubMedCrossRefGoogle Scholar
  3. 3.
    Sandler RS, Eisen GM (2000) Epidemiology of inflammatory bowel disease. In: Inflammatory Bowel Disease Kirsner JB (Hrsg). Philadelphia W. B. Saunders Company 89–112Google Scholar
  4. 4.
    Shivananda S, Lennard-Jones J, Logan R et al (1996) Incidence of inflammatory bowel disease across Europe: Is there a difference between north and south. Results of the European Collaborative Study on Inflammatory Bowel Disease. Gut 39: 690–696PubMedCrossRefGoogle Scholar
  5. 5.
    Trallori G, Patti D, Saieva C (1996) A population-based study of inflammatory bowel disease in Florence over 15 years (1978–1992). Scand J Gastroenterol 31: 892–897PubMedCrossRefGoogle Scholar
  6. 6.
    Stowe SP, Redmond SR, Stormont JM et al (1990) An epidemiologic study of inflammatory bowel diseases in Rochester, New York. Hospital incidence. Gastroenterology 98: 104–109PubMedGoogle Scholar
  7. 7.
    Ekbom A, Helmick C, Zack M et al (1991) The epidemiology of inflammatory bowel disease: A large, population-based study in Sweden. Gastroenterology 100: 350–356PubMedGoogle Scholar
  8. 8.
    Keighley A, Miller DS, Hughes AO et al (1976) The demographic and social characteristics of patients with Crohn’s disease in the Nottingham area Scand J Gastroentereol 11: 293–300Google Scholar
  9. 9.
    Satsangi J, Jewell DP, Bell JI. (1997) The genetics of inflammatory bowel disease. Gut 40: 572–577PubMedGoogle Scholar
  10. 10.
    Mayer L (2000) Current concepts of inflammatory bowel disease etiology and pathogenesis. In: Inflammatory Bowel Disease Kirsner JB (Hrsg). Philadelphia W. B. Saunders Company 280–296Google Scholar
  11. 11.
    Mayberry JF,Rhodes J (1984) Epidemiologic aspects of Crohn’s disease:A review of the literature. Gut 25: 886–890PubMedCrossRefGoogle Scholar
  12. 12.
    Tysk C, Linberg E, Janerot G et al (1988) Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut 29: 990–995PubMedCrossRefGoogle Scholar
  13. 13.
    Lee JC, Lennard-Jones JE (1996) Inflammatory bowel disease in 67 families each with three or more affected first-degree relatives. Gastroenterology 111: 587–591PubMedCrossRefGoogle Scholar
  14. 14.
    Mattew CG, Easton DF, Lennard-Jones JE (1996) HLA and inflammatory bowel disease. Lancet 348: 68–70CrossRefGoogle Scholar
  15. 15.
    Hugot JP, Laurent-Puig P, Gower-Rousseau C et al (1996) Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 379: 821–823PubMedCrossRefGoogle Scholar
  16. 16.
    Romagnani S (1992) Induction of TH1 and TH2 responses: A key role for the,natural’ immune response? Immunol Today 13: 379–384PubMedCrossRefGoogle Scholar
  17. 17.
    Monteleone G, MacDonald TT, Wathen NC et al (1999) Enhancing lamina propria Thi cell responses with interleukin 12 produces severe tissue injury. Gastroenterology 117: 1078–1083CrossRefGoogle Scholar
  18. 18.
    Albelda SM, Smith CW, Ward PA (1994) Adhesion molecules and inflammatory injury. FASEB J 8:504–512PubMedGoogle Scholar
  19. 18.
    Munkholm P, Langholz E, Hollander D et al (1994) Intestinal permeability in patients with Crohn’s disease and ulcerative colitis and their first degree relatives. Gut 35: 68–72PubMedCrossRefGoogle Scholar
  20. 20.
    Bjarnason I, McPheson A, Hollander D (1995) Intestinal permeability: An overview. Gastroenterology 108: 1566–71PubMedCrossRefGoogle Scholar
  21. 21.
    Hodgson HDF, Wands JR, Isselbacher KJ (1978) Decreased suppressor cell activity in inflammatory bowel disease. Clin Exp Immunol 32: 451–456PubMedGoogle Scholar
  22. 22.
    Zeitz M (1997) Pathogenesis of inflammatory bowel disease. Digestion 58 (suppl) 59–66PubMedCrossRefGoogle Scholar
  23. 23.
    Stange EF (Hrsg) (1999) Colitis ulcerosa - Morbus Crohn. UNI-MED Verlag, BremenGoogle Scholar
  24. 24.
    Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265: 956–959PubMedCrossRefGoogle Scholar
  25. 25.
    Sartor RB (1995) Insight into the pathogenesis of inflammatory bowel diseases provided by new rodent models of spontaneous colitis Inflamm Bowel Dis 1: 64–71CrossRefGoogle Scholar
  26. 26.
    Morales V, Snapper SB, Blumberg R (1996) Probing the gastrointestinal immune function using transgenic and knockout technology. Curr Opin Gastroenterol 12: 577–582CrossRefGoogle Scholar
  27. 27.
    Madsen KL, Doyls JS, Jewell LD et al (1999) Lactobacillus species prevents colitis in interleukin 10-gene deficient mice. Gastroenterology 116: 1107–1111PubMedCrossRefGoogle Scholar
  28. 28.
    Gionchetti R, Rizzellb F, Venturi A et al (1998) Maintenance treatment of chronic pouchitis: A randomized, placebo-controlled, double-blind trial with a new probiotic preparation (abstract). Gastroenterology 114: A985CrossRefGoogle Scholar
  29. 29.
    Rembacken BJ, Snelling AM, Hawkey PM et al (1999) Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: A randomized trial. Lancet 354: 635–637PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • W. F. Caspary
    • 1
  1. 1.Medizinische Klinik IIUniversitätsklinikum FrankfurtFrankfurtDeutschland

Personalised recommendations