Skip to main content

Abstract

In this chapter the term insecticides is used in its broadest sense and refers to any category of chemical compounds (from low molecular weight organics to globular polypeptides) of either synthetic or natural origin which is processed/designed by either chemical or genetic manipulations to provide a device for large-scale insect control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams ME, Miller TA (1979) Site of action of pyrethroids; repetitive backfiring in flight motor units of house fly. Pestic Biochem Physiol 11:218–231.

    Article  CAS  Google Scholar 

  • Adams ME, Miller TA (1980) Neural and behavioural correlates of pyrethroid and DDT-type poisoning in the house fly Musca domestica. Pestic Biochem Physiol 13:137–147.

    Article  CAS  Google Scholar 

  • Armstrong CM (1992) Voltage dependent ion channels and their gating. Physiol Rev 72:5–13

    Google Scholar 

  • Atkinson RK, Howden MEH, Tyler MI, Vonarx EJ (1993) Insecticidal toxins derived from funnel web spiders (Atrax or Hadronyche). International patent applicationPCT/AU93/00039 (W093/15108

    Google Scholar 

  • Atkinson RK, Vonarx EJ, Howden MEH (1996) Effects of whole venom and venom fractions from several Australian spiders including Atrax (Hadrohnyche) species, when injected into insects. Comp Biochem Physiol 114c:113–117.

    CAS  Google Scholar 

  • Beam BP (1989) Classes of calcium in vertebrate cells.Annu Rev Physiol 51:367–384

    Article  Google Scholar 

  • Berlin JR, Akera T, Brody TM, Matsumura F,(1984) The Inotropic affects of a synthetic pyrethroid decamethrin on isolated guinea pig atrial muscle. Eur J Pharmacol 98:313–323

    Article  PubMed  CAS  Google Scholar 

  • Berry RW (1977) The evaluation of permethrin for wood preservation. Pestic Sci 8:284–290

    Article  CAS  Google Scholar 

  • Blade RJ, Burt PE, Hart RJ, Mos MDV, (1985) The action of insecticidal isobutylamide compounds on the insects nervous system. Pestic Sci 16:554–564

    Google Scholar 

  • Blackman GG, Hodson MJ (1977) Further evaluation of permethrin for biting fly control. Pestic Sei 8:270–273.

    Article  CAS  Google Scholar 

  • Bloomquist JR (1996) Ion channels as targets for insecticides. Annu Rev Entomol 41:163–190

    Article  PubMed  CAS  Google Scholar 

  • Bonning BC, Hammock BD (1996) Development of recombinant baculoviruses for insect control. Annu Rev Entomol 41:191–210.

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1980) Neurotoxins that act on voltage sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol 20:15–43.

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1988) Structure and function of voltage sensitive ionic channels. Science 242:50–61.

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1991) Structure and function of voltage gated sodium and calcium channels. Curr Opin Neurobiol 1:5–13.

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1992) Cellular and molecular biology of voltage gated sodium channels. Am J Physiol 72:15–48.

    Google Scholar 

  • Chadwick PR (1979) The activity of some pyrethroids against Periplaneta americana and Blatella germanica. Pestic Sei 10:32–38.

    Article  CAS  Google Scholar 

  • Clark JM (ed) (1995) Molecular action of insecticides on ion channels. ACS Symp 591. American Chemical Society, Washington DC.

    Google Scholar 

  • Clark JM, Brooks MW (1989) Role of ion channels and intraterminal calcium homeostasis in the action of deltamethrin on presynaptic nerve terminals. Biochem Pharmacol 38:2233–2245.

    Article  PubMed  CAS  Google Scholar 

  • Clark JM, Edman SJ, Nagy SR, Canhoto A, Hecht F, Van Houten (1995) Action of DDT and pyrethroids on calcium channels in Paramecium tetraurelia. In: Clark JM (ed) Moleular action of insecticides on ion channels. ACS Symp 591. American Chemical Society, Washington, DC, pp 173–191.

    Chapter  Google Scholar 

  • Cory JS, Hirst ML, Williams T, Halls RS, Gouson D, Green BM, Curty TM, Possee RD, Cayley PJ, Bishop DHL (1994) Field trial of a genetically improved baculovirus insecticide. Nature 370:138–140.

    Article  Google Scholar 

  • Crowder LA, Tollefson MS, Watson TF (1979) Dosage mortality studies of synthetic pyrethroids methyl parathion on the tobacco budworm in central Arizona. J Econ Entomol 72:1–3

    CAS  Google Scholar 

  • Darbon H, Zlotkin E, Kopeyan C, Van Rietschoten J, Rochat H, (1982) Covalent Structure of the insect toxin of the North African scorpion Androctonus australis Hectar. Int J Pept Protein Res 20:130–330

    Google Scholar 

  • Deecher DC, Soderlund DM (1991) RH 3421, an insecticidal dihydropyrazole, inhibits sodium channel-dependent sodium uptake in mouse brain preparations. Pestic Biochem Physiol 39:130–137.

    Article  CAS  Google Scholar 

  • Devidas S, Guggino WB (1997) CFTR: domains, structure and function. J Bioenerg Biomembr 29:443–451.

    Article  PubMed  CAS  Google Scholar 

  • Dolly JE (ed) (1988) Neurotoxins in neurochemistry. Ellis Horwood, Chichester.

    Google Scholar 

  • Dong K (1997) A single amino-acid change in the para sodium channel protein is associated with knock down resistance (KDR) to pyrethroid insecticides in German cockroach. Insect Biochem Mol Biol 27:93–100.

    Article  PubMed  CAS  Google Scholar 

  • Durell H, Guy HR (1992) Atomic scale structure and functional models of voltage gated potassium channels. Biophys J 62:238–250.

    Article  PubMed  CAS  Google Scholar 

  • Eitan M, Fowler E, Herrmann R, Duval A, Pelhate M, Zlotkin E (1990) A scorpion venom paralytic to insects which affects sodium current inactivation: purification, primary structure and mode of action. Biochemistry 29:5941–5947.

    Article  PubMed  CAS  Google Scholar 

  • Elliot M, Farnham AW, Janes NF, Needham PH, Pulman DA (1974a) Synthetic insecticides with a new order of activity. Nature 248:710–711.

    Article  Google Scholar 

  • Elliot M, Farnham AW, Janes NF, Needham PH, Pulman DA (1974b) Insecticidally active conformation of pyrethroids. In: Kohn GK (ed) Mechanisms of pesticide action. Am Chem Soc Symp Ser 2, American Chemical Society, Washington, DC, pp 80–91.

    Chapter  Google Scholar 

  • Elliot M, Janes NF, Porter C (1978) The future of pyrethroids in insect control. Annu Rev Entomol 23:443–469.

    Article  CAS  Google Scholar 

  • Elliot M, Farnham AW, Janes NF, Johnson DM, Pulman DA, Sawicki RM (1986) Insecticidal amides with selective potency against a resistant (Super-KDR) strain of houseflies. Agric Biol Chem 50:1347–1349.

    Article  Google Scholar 

  • Elliot M, Farnham AW, Janes NF, Johnson DM, Pulman DA (1987) Synthesis and insecticidal activity of lipophilic amides. I. Introductory survey and discovery of an active synthetic compound. Pestic Sci 18:191–201.

    Google Scholar 

  • Endean R, Rudkin C (1963) Studies of the venom of some Conidae. Toxicon 1:49–64.

    Article  Google Scholar 

  • Fainzilber M, Kofman O, Zlotkin E, Gordon D (1994) A new neurotoxin receptor site on sodium channels is identified by a conotoxin that affects sodium channel inactivation in molluscs and acts as an antagonist in rat brain. J Biol Chem 269:2574–2580.

    PubMed  CAS  Google Scholar 

  • Fainzilber M, Lodder H, Kits KS, Kofman O, Vinnitzky I, Van Rietschoten J, Zlotkin E, Gordon D (1995) A new conotoxin affecting sodium current inactivation interacts with the δ-conotoxin receptor site. J Biol Chem 270:1123–1129.

    Article  PubMed  CAS  Google Scholar 

  • Fill M, Coronado R (1988) Ryanodine receptor channel of sacroplasmic reticulum. Trends Neurosci 11:453–457.

    Article  PubMed  CAS  Google Scholar 

  • Fishman L, Herrmann R, Gordon D, Zlotkin E (1997) Insect tolerance to a neurotoxic polypeptide: pharmacokinetic and pharmacodynamic aspects. J Exp Biol 2000:1115–1123

    Google Scholar 

  • Fletcher JI, Smith R, O’Donoghue SI, Nilges M, Connor M, Howden MEH, Christie MJ, King GF (1997) The structure of a novel insecticidal neurotoxin, ω-atracotoxin-HVl from the venom of an Australian funnel web spider. Nature Struct Biol 4:559–566.

    Article  PubMed  CAS  Google Scholar 

  • Forshaw PJ, Lister T, Ray DE (1993) Inhibition of neuronal voltage dependent chloride channel by the type II pyrethroid, deltamethrin. Neuropharmacology 32:105–111.

    Article  PubMed  CAS  Google Scholar 

  • Fosket JK(1998) CIC and CFTR chloride channel gating. Annu Rev Physiol 60:689–717

    Article  Google Scholar 

  • Gammon DW, Brown MA, Casida JE (1981) Two classes of pyrethroid action in the cockroach. Pestic Biochem Physiol 15:181–191.

    Article  CAS  Google Scholar 

  • Gerschburg E, Stockholm D, Froy O, Rashi S, Gurevitz M, Chejanovsky N (1998) Baculovirus mediated expression of a scorpion depressant toxin improves the insecticidal efficacy achieved with excitatory toxins. FEBS Lett 422:132–136.

    Article  Google Scholar 

  • Ghiasudkin SM, Soderlund DM (1985) Pyrethroid insecticides: potent, stereospecific enhancers of mouse brain sodium channel activation. Pestic Biochem Physiol 24:200–206.

    Article  Google Scholar 

  • Gordon D (1997) Sodium channels as targets for neurotoxins: mode of action and interaction of neurotoxins with receptor on sodium channels. In: Gutman Y, Lazorowici P (eds) Toxins and signal transduction. Harwood, Amsterdam, pp 119–149.

    Google Scholar 

  • Gordon D, Moskowitz H, Eitan M, Werner C, Catterall WA, Zlotkin E (1992) Localization of receptor sites for insect selective toxins on sodium channels by site directed antibodies. Biochemistry 31:7622–7628.

    Article  PubMed  CAS  Google Scholar 

  • Gordon D, Savarin P, Gurevitz M, Zinn-Justin S (1998) Functional anatomy of scorpion toxins affecting sodium channels. J Toxicol Toxin Rev 17:131–159.

    CAS  Google Scholar 

  • Griffiths DC (1977) The effectiveness of pyrethroid seed treatments against soil pests of cereals. Pestic Sci 8:258–263.

    Article  CAS  Google Scholar 

  • Gray WR (1988) Conotoxins as probes of channel subtypes. In: Dolly JO (ed) Neurotoxins and neurochemistry. Ellis Horwood, Chichester, pp 151–161.

    Google Scholar 

  • Hassall K (1990) The biochemistry and uses of pesticides. VCH, Weinheim.

    Google Scholar 

  • Herrmann R, Fishman L, Zlotkin E (1990) The tolerance of lepidopterous larvae to an insect selective neurotoxin. Insect Biochem 20:625–637.

    Article  CAS  Google Scholar 

  • Herrmann R, Moskovitz H, Zlotkin E, Hammock BD (1995) Positive cooperativity among insecticidal scorpion neurotoxins. Toxicon 33:1099–1102.

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer, Sunderland.

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544.

    CAS  Google Scholar 

  • Hodgkin AL, Horowicz P (1959) The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol (Lond) 148:127–160.

    CAS  Google Scholar 

  • Hodgkin AL, Horowicz P (1960) The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres. J Physiol (Lond) 153:370–385.

    CAS  Google Scholar 

  • Huddart H (1977) The effect of some organophosphorous and organo-chloride insecticides on contractability, membrane potential and calcium regulation in insect skeletal muscle. Comp Biochem Physiol 586:91–95.

    Google Scholar 

  • Huddart H (1978) Parathion and DDT-induced effect on tension and calcium transport in molluscan visceral muscle. Comp Biochem Physiol 61C:l–6.

    Google Scholar 

  • Ingles PJ, Adams PM, Knipple DC, Soderlund DM (1996) Characterization of voltage sensitive sodium channel gene coding sequences from insecticide susceptible and knockdown resistant housefly strains. Insect Biochem Mol Biol 26:319–326.

    Article  PubMed  CAS  Google Scholar 

  • Jeffries PR, Lehmberg E, Lam WW, Casida JE (1993) Bioactive ryanoids from nucleophilic additions to 4,12-reco-4,12-dioxoryanodine. J Med Chem 36:1128–1135.

    Article  Google Scholar 

  • Jentsch TJ, Steinmeyer K, Schwartz G (1990) Primary structure of Torpedo marmorata chloride channel isolated by expression cloning of Xenopus oocytes. Nature 348: 510–514.

    Article  PubMed  CAS  Google Scholar 

  • Juberg DR, Stuenkel EL, Loch-Caruso R (1995) Dde chlorinated insecticide l, l-dichloro-2,2-bis(4- chlorophenyl)ethane (p, p’-DDD) increases intracellular calcism in rat myometrial smooth muscle cells. Toxicol Appl Pharmacol 135:147–155.

    Article  PubMed  CAS  Google Scholar 

  • Kadous A, Matsumura F, Eran E (1994) High affinity binding of 3H-verapamil to rat brain synaptic membrane is antagonized by pyrethroid insecticides. J Environ Sci Health 29:855–871.

    Article  CAS  Google Scholar 

  • Kartner N, Hanrahan JW, Jensen TJ, Naismith AL, Sun S, Ackerley CA, Reyes EF, Tsui LC, Rommens JM, Bear CE, Riordan JR (1991) Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell 64:681–691.

    Article  PubMed  CAS  Google Scholar 

  • Knapp FW, Herald F (1981) Face fly and horn fly reduction on cattle with fenvalerate ear tags. J Econ Entomol 74:295–296.

    PubMed  CAS  Google Scholar 

  • Kopeyan C, Martinez G, Rochat H (1978) Amino acid sequence of neurotoxin V from the scorpion Leiurus quinquestriatus quinquestriatus. FEBS Lett 89:54–59.

    Article  PubMed  CAS  Google Scholar 

  • Kopeyan C, Martinez G, Rochat H (1985) Primary structure of toxin IV of Leiurus quinquestriatus quinquestriatus characterization of a new group of scorpion toxins. FEBS Lett 181:211–217.

    Article  CAS  Google Scholar 

  • Kopeyan C, Mansuelle P, Sampieri F, Brando T, Bahraoui ELM, Rochat H, Granier C (1990) Primary structure of scorpion anti insect toxins isolated from the venom of Leiurus quinquestriatus quinquestriatus. FEBS Lett 261:423–428.

    Article  PubMed  CAS  Google Scholar 

  • Krapcho KJ, Krai RM, Van Wagenen BC, Eppler KJ, Morgan TK (1995) Characterization and cloning of insecticidal peptides from the primitive weaving spider Diguetia canites, Insect biochem. Mol Biol 25:991–1000.

    CAS  Google Scholar 

  • Lazdunski M, Lombet A, Maurre C (1988) Specific binding sites for pyrethroids on the voltage- dependent sodium channel. In: Lunt GG (ed) Neurotox 88-Molecular basis of drug and pesticide action. Excerptia Medica, Amsterdam, pp 289–300.

    Google Scholar 

  • Lee SH, Smith TJ, Knipple DC, Soderlund DM (1999) Mutations in the housefly VSSC1 sodium channel gene associated with super-KDR resistance abolish the pyrethroid sensitivity of VSSCl/tip E sodium channels in Xenopus oocytes. Insect Biochem Mol Biol 29:185–194.

    Article  PubMed  Google Scholar 

  • Lees G, Burt PE (1988) Neurotoxic action in a lipid amide on the cockroach nerve cord and on locust somata maintained in short term culture: a novel preparation for the study of Na+ channel pharmacology. Pestic Sci 24:189–191.

    Google Scholar 

  • Lehmberg E, Casida JE (1994) Similarity of insect and mammalian ryanodine binding sites. Pestic Biochem Physiol 48:145–152.

    Article  CAS  Google Scholar 

  • Lund AE (1985) Insecticides: effects on the nervous system. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 9–56.

    Google Scholar 

  • Maeda S, Volrath SL, Hanzlik TN, Harper SA, Maddox DW, Hammock BD, Fowler E (1991) Insecticidal effects of an insect-specific neurotoxin expressed by a recombinant baculovirus. Virology 184:777–780.

    Article  PubMed  CAS  Google Scholar 

  • Magazanik LG, Federova IM, Kovalevskaya GI, Pashkov VN, Bulgakov DV, Grishin EV (1992) Selective presynaptic insectotoxin (alpha-latroinsectotoxin) isolated from black widow spider venom. Neuroscience 46:181–188.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Eauclaire MF, Couraud F (1995) Scorpion neurotoxins: effects and mechanisms. In Chang LW, Dyer RS (eds) Handbook of neurotoxicology. Marcel-Dekker, New York, pp 683–716.

    Google Scholar 

  • Maulet Y, Lambert RC, Mykita S, Mouton J, Partisani M, Bailly Y, Bombarde G, Feltz A (1999) Expression and targeting to the plasma membrane of CIC-K, a chloride channel specifically expressed in distinct tubule segments of Xenopus laevis kidney. Biochem J 340:737–743.

    Article  PubMed  CAS  Google Scholar 

  • Mayfield RJ, O’Laughlin GJ (1980) Evaluation of decamethrin as an insect proofing agent for wool. J Agric Food Chem 28:886–887.

    Article  CAS  Google Scholar 

  • McCutchen BF, Choudry PV, Crenshaw R, Maddox D, Kamita SG, Hammock BD (1991) Development of a recombinant baculovirus expressing an insect-selective neurotoxin: potential for pest control. Biotechnology 9:848–852.

    Article  PubMed  CAS  Google Scholar 

  • McCutchen BF, Hoover K, Preisler HK, Batana HD, Herrmann R, Robertson JL, Hammock BD (1997) Interaction of recombinant and wild-type baculoviruses with classical insecticides and pyrethroid resistant tobacco budworms (Lepidoptera, Noctuidae). J Econ Entomol 90:1170–1189.

    PubMed  CAS  Google Scholar 

  • Meissner G (1986) Ryanodine activation and inhibition on the Ca++ release channel of sarcoplasmic reticulum. J Biol Chem 14:6300–6306.

    Google Scholar 

  • Miller RJ (1992) Voltage sensitive Ca+2 channels. J Biol Chem 267:1403–1406.

    PubMed  CAS  Google Scholar 

  • Miyamoto J, Kaneko H, Tsuji R, Okuno Y (1995) Pyrethroids, nerve poisons: how their risks to human health should be assessed. Toxicol Lett 82/83:933–940

    Article  CAS  Google Scholar 

  • Moore RF (1980) Behavioral and biological effects of NRDC-161 as factors in control of the boll weevil. J Econ Entomol 73:265–267.

    CAS  Google Scholar 

  • Moskowitz H, Herrmann R, Zlotkin E, Gordon DC (1994) Variability among insect sodium channels revealed by binding of selective neurotoxins. Insect Biochem Mol Biol 224:13–19

    Article  Google Scholar 

  • Mullin CA, Jeffrey GS (eds) (1992) Molecular mechanisms of insecticide resistance. American Chemical Society, Washington, DC.

    Google Scholar 

  • Narahashi T (1988) Molecular and cellular approaches to neurotoxicology: past, present and future. In: Lunt GG (ed) Neurotox’88 molecular basis of drug and pesticide action. Excerpta Medica, Amsterdam, pp 269–288.

    Google Scholar 

  • Narahashi T (1992) Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol Sci 13:236–241.

    Article  PubMed  CAS  Google Scholar 

  • Narahashi T (1996) Neuronal ion channels as the target sites of insecticides. Pharmacol Toxicol 78:1–14.

    Article  Google Scholar 

  • Narahashi T, Ginsburg KS, Nagata K, Song JH, Tatebayashi H (1998) Ion channels as targets for insecticides. Neurotoxicology 19:581–590.

    PubMed  CAS  Google Scholar 

  • Nassif M, Brooke JP, Hutchinson DBA, Kamel OM, Savage EA (1980) Studies with permethrin against body lice in Egypt. Pestic Sci 11:679–684.

    Article  CAS  Google Scholar 

  • Nicholson RA, Zhang A (1995) Presynaptic actions of dihydropyrazoles. In: Clark JM (ed) Molecular actions of insecticides on ion channels. American Chemical Society, Washington, DC, pp 44–55.

    Chapter  Google Scholar 

  • Nishimura K, Tada T, Nakagawa Y (1996) Effect of insect growth regulators, N-tert-butyl N, N- dibenzoylhydrazines, on neural activity of the American cockroach. Comp Biochem Physiol Pharmacol Toxicol Endocrinol 114:141–144.

    Article  CAS  Google Scholar 

  • Osborne MP (1985) DDT, γ-HCH and the cyclodienes. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 131–182.

    Google Scholar 

  • Ottea JA, Payne GT, Soderlund DM (1990) Action of insecticidal N-alkylamides at site 2 of the voltage sensitive sodium channel. J Agric Food Chem 38:1724–1728.

    Article  CAS  Google Scholar 

  • Palade PT, Barchi RL (1977) On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids. J Gen Physiol 69:879–965.

    Article  PubMed  CAS  Google Scholar 

  • Pauron D, Barhanin J, Amichot M, Pralavorio M, Berge JB, Lazdunski M (1989) Pyrethroid receptor in the insect Na+ channel: alteration of its properties in pyrethroid-resistant flies. Biochemistry 28:1673–1678.

    Article  CAS  Google Scholar 

  • Payne-Gregory T, Deecher-Darlene C, Soderlund DM (1998) Structure activity relationship for the action of dihydropyrazole insecticides on mouse brain sodium channels. Pestic Biochem Physiol 60:177–180.

    Article  Google Scholar 

  • Pessah IN, Waterhouse AL, Casida JE (1985) The calcium-ryanodine receptor complex of skeletal and cardiac muscle. Biochem Biophys Res Commun 128:449–456.

    Article  PubMed  CAS  Google Scholar 

  • Plapp FW Jr (1981) Toxicity of synthetic pyrethroids to laboratory and field populations of the tobacco budworm in central Texas. J Econ Entomol 74:207–209.

    CAS  Google Scholar 

  • Pittendrigh B, Reenan R, ffrench-constant RH, Ganetzky B (1997) Point mutations in the Drosophila sodium channel gene para associated with resistance to DDT and pyrethroid insecticides. Mol Gen Genet 256:602–610

    Article  PubMed  CAS  Google Scholar 

  • Pongs O (1992) Molecular biology of voltage dependent potassium channels. Physiol Rev 72:69–88.

    Google Scholar 

  • Possani LD, Martin BM, Svendsen IB, Rude GS, Erickson BW (1985) Scorpion toxin from Centruroides noxius and Tityus serrulatus: primary structures and sequence comparison by metric analysis. Biochem J 229:739–750.

    PubMed  CAS  Google Scholar 

  • Prikhodko GG, Robson M, Warmke JW, Cohen CJ, Smith MM (1996) Properties of three baculovirus-expressing genes that encode insect-selective toxins: μ-Aga-IV, As II and Sh. I. Biol Control 7:236–244.

    Google Scholar 

  • Rao GV, Rao KS (1997) Modulation of K+ transport across synaptosomes of rat brain by synthetic pyrethroids. J Neurol Sci 147:127–133.

    Article  PubMed  CAS  Google Scholar 

  • Ray DE, Sutharsan S, Forshaw PJ (1997) Action of pyrethroid insecticides on voltage gated chloride channels in neuroblastoma cells. Neurotoxicol Little Rock 18:755–760.

    CAS  Google Scholar 

  • Rochat H, Rochat C, Sampieri F, Miranda F, Lissitzky S (1972) The amino acid sequence of neurotoxin II of Androtonus australis Hector. Eur J Biochem 28:381–388.

    Article  PubMed  CAS  Google Scholar 

  • Rossignol DP (1995) Possible role of guanosine S-triophosphate binding proteins in pyrethroid activity. In: Clark JM (ed) Molecular action of insecticides on ion channels. ACS Symp 591. American Chemical Society, Washington, DC, pp 149–161.

    Chapter  Google Scholar 

  • Ruigt GSF(1985)Pyrethroids In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology 12 Pergamon Press, Oxford, pp 183–262

    Google Scholar 

  • Salgado VL (1990)Mode of action of insecticidal generation in dihydropyrazoles: selective block of impulse generation in sensory nerves. Pestic Sci 28:389–411

    Article  CAS  Google Scholar 

  • Salgado VL (1992a) The neurotoxic insecticidal mechanism of the nonsteroidal ecdysone agonist RH-5849: K+ channel block in nerve and muscle. Pestic Biochem Physiol 43:1–13.

    Article  CAS  Google Scholar 

  • Salgado VL (1992b) Block of voltage dependent K+ channels in insect muscle by the diacylhydrazile insecticide RH-5849 4-aminopyridine and guanidine. Arch Insect Biochem Physiol 21:239–252.

    Article  CAS  Google Scholar 

  • Salgado VL (1992c) Slow voltage-dependent block of sodium channels in crayfish nerve by dihydropyrazole insecticides. Mol Pharmacol 41:120–126.

    PubMed  CAS  Google Scholar 

  • Salgado VL (1998) Block of neuronal voltage dependent K+ channels by diacylhydrazine insecticides. Neurotoxicology 19:245–252.

    PubMed  CAS  Google Scholar 

  • Schreck CE, Smith N, Weidhaas D, Posey K, Smith D (1978) Repellent vs. toxicants as clothing treatment for protection from mosquitoes and other biting flies. J Econ Entomol 71:919–922.

    PubMed  CAS  Google Scholar 

  • Schwiebert EM, Benos DJ, Egan ME, Stutts MJ, Guggino WB (1999) CFTR is a conductance regulator as well as a chloride channel. Physiol Rev 79:5145–5166.

    Google Scholar 

  • Scott J, Wheelock GD (1992) Characterization of a cytochrome p450 responsible for pyrethroid resistance in the housefly. In: Mullin CA, Jeffrey CS (eds) Molecular mechanisms of insecticide resistance. American Chemical Society, Washington, DC, pp 16–30.

    Chapter  Google Scholar 

  • Scott RH, O’Brien K, Roberts L, Mordue W, Mordue-Luntz J (1999) Extracellular and intracellular actions of azadirachtin on the electrophysiological properties of cultured rat DRG neurones. Comp Biochem Physiol Pharmacol Toxicol Endocrinol 123:85–93.

    Article  CAS  Google Scholar 

  • Smies M, Everts RHJ, Rejnenburg FHM, Koeman A (1980) Environmental aspects of field trials with pyrethroids to eradicate tsetse fly in Nigeria. Exotoxicol Environ Safety 4:114–128

    Article  CAS  Google Scholar 

  • Soderlund DM, Knipple DC (1995) Actions of insecticides on sodium channels: multiple target sites and site specific resistance. In: Clark JM (ed) Molecular actions of insecticides on ion channels. American Chemical Society, Washington, DC, pp 97–108.

    Chapter  Google Scholar 

  • Song JH, Nagata K, Tatebayshi H, Narahashi T (1996) Interactions of tetramethrin, fenvalerate and DDT at the sodium channel in rat dorsal root ganglion neurons. Brain Res 708:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Steinmeyer K, Jentsch J J (1998) Molecular physiology of renal chloride channels. Curr Opin Nephrol Hypertens 7:497–502.

    Article  PubMed  CAS  Google Scholar 

  • Stewart LMD, Horst M, Ferber ML, Merryweather AT, Cayley BJ et al. (1991) Construction of an improved baculovirus insecticide containing an insect-specific toxin gene. Nature 352:85–88.

    Article  PubMed  CAS  Google Scholar 

  • Stuhmer W, Conti F, Suzuki H, Wang X, Woda M, Yahagi N, Kubott, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channels. Nature 339:597–603.

    Article  PubMed  CAS  Google Scholar 

  • Su HCF(1985) N-Isobutylamides. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 237–289

    Google Scholar 

  • Tatebayashi H, Narahashi T (1994) Differential mechanism of action of the pyrethroid tetramethrin on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. J Pharmacol Exp Ther 270:595–603.

    PubMed  CAS  Google Scholar 

  • Taylor MFJ, Heckel DG, Brown TM, Kreitman ME, Black B (1993) Linkage of pyrethroid insecticide resistance to a sodium channel locus in the tobacco budworm. Insect Biochem Mol Biol 23:763–775.

    Article  PubMed  CAS  Google Scholar 

  • Tomalski MD, Kutney R, Bruce WA, Brown MR, Blum MS, Travis J (1989) Purification and characterization of insect toxins derived from the mite Pyemotes triciti. Toxicon 27:1151–1167.

    Article  PubMed  CAS  Google Scholar 

  • Trainer VL, McPhee JC, Boutelet-Bochan H, Baker C, Schener T, Catterall WA (1997) High affinity binding of pyrethroids to the alpha subunit of brain sodium channels. Mol Pharmacol 51:651–657.

    PubMed  CAS  Google Scholar 

  • Usherwood PNR (1962) The action of the alkaloid ryanodine on insect skeletal muscle. Comp.Biochem Physiol 6:181–195

    Article  PubMed  CAS  Google Scholar 

  • Vijverberg HPM, Van den Bercken J (1990) Neurotoxicological effects and the mode of action of pyrethroid insecticides. Crit Rev Toxicol 21:105–126.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Smith R, Fletcher JI, Wilson H, Wood CI, Howden ME, King GF (1999) Structure function studies of omega atracotoxin, a potent antagonist of insect voltage gated calcium channels. Eur J Biochem 264:488–494.

    Article  PubMed  CAS  Google Scholar 

  • Ware GW (1982) Fundamentals of pesticides - a self instruction guide. Thompson, Fresno, pp 78–79.

    Google Scholar 

  • Warmke JW, Reenan RAG, Wang P, Qian S, Arena JP, Wang J, Wunderler D, Liu K, Kachorowski GJ, Van der Ploeg LHT, Genetzky B, Cohen CJ (1997) Functional expression of Drosphilia para sodium channels: modulation by the membrane protein Tip E and toxin pharmacology. J Gen Physiol 110:119–133.

    Article  PubMed  CAS  Google Scholar 

  • Webb RE, Smith FF, Sullivan WN, Schechter MS, Boswell AL, Ewing A (1974) Resmethrin evaluation against some common greenhouse pests. J Econ Entomol 67:295.

    PubMed  CAS  Google Scholar 

  • Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL (1996) Identification of mutations in the housefly para type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet 252:51–60.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki T, Ishi T (1952) Studies on the mechanism of action of insecticides. IV. The effects of insecticides on the nerve conduction of insects. Oyo-Kontyu 7:157–164.

    Google Scholar 

  • Zhang A, Towner P, Nicholson RA (1996) Dihydropyrazole insecticides: interference with depolarization-dependent phosphorylation of synapsin I and evoked release of L-glutamate in nerve terminal preparations from mammalian brain. Pestic Biochem Physiol 54:24–30.

    Article  CAS  Google Scholar 

  • Zlotkin E (1987) Pharmacology of survival: insect selective neurotoxins derived from scorpion venom. Endeavour 11:168–174.

    Article  PubMed  CAS  Google Scholar 

  • Zlotkin E (1999) The insect voltage gated sodium channel as target of insecticides. Annu Rev Entomol 44:429–455.

    Article  PubMed  CAS  Google Scholar 

  • Zlotkin E, Miranda T, Rochat H (1978) Chemistry and pharmacology of Buthinae scorpion venoms. In: Bettini S (ed) Arthropod venoms. Handbook of experimental pharmacology, vol 48. Springer, Berlin Heidelberg New York, pp 317–369.

    Google Scholar 

  • Zlotkin E, Eitan M, Bindokas VP, Adams, Mayer M, Burkhart, Fowler E (1991) Functional duality and structural uniqueness of depressant insect selective neurotoxins. Biochemistry 30:4814–4821.

    Article  PubMed  CAS  Google Scholar 

  • Zlotkin E, Moskowitz H, Herrmann R, Pelhate M, Gordon D (1995) Insect sodium channel as the target for insect-selective neurotoxins from scorpion venom. In: Clark JM (ed) Molecular actions of insecticides on ion channels. American Chemical Society, Washington, DC, pp 56–85.

    Chapter  Google Scholar 

  • Zlotkin E, Devonshire AL, Warke JW (1999) The pharmacological flexibility of the insect voltage gated sodium channel: toxicity of AalT to knockdown resistant (kdr) flies. Insect Biochem Mol Biol 29:849–853.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Zlotkin, E. (2001). Insecticides Affecting Voltage-Gated Ion Channels. In: Ishaaya, I. (eds) Biochemical Sites of Insecticide Action and Resistance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59549-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59549-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67625-6

  • Online ISBN: 978-3-642-59549-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics