Skip to main content

Insect Midgut as a Site for Insecticide Detoxification and Resistance

  • Chapter
Biochemical Sites of Insecticide Action and Resistance

Abstract

Pesticide resistance is a severe and important problem in situations where mainly chemicals are used to kill pests. However, apart from the economic, social and environmental costs associated with this problem, resistant insects and mites are a physiological marvel. Some strains have become so resistant to a given insecticide that they can survive exposure to virtually any dose. So there are numerous reasons for studying the underlying mechanisms by which insects become resistant to insecticides. Such studies are important for both the applied and basic aspects of insecticide resistance, as well as providing valuable information for workers in allied fields. For instance, if the biochemical basis of the resistance can be determined, then it may be possible to design a highly sensitive monitoring technique, which is one of the key factors in developing successful resistance management programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agosin M (1985) Role of microsomal oxidations in insecticide degradation. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 647–712.

    Google Scholar 

  • Aldridge WN (1953) Serum seterases. I. Two types of esterases (A and B) hydrolyzing p-nitro- phenyl acetate, propionate and butyrate, and a method for their determination. Biochem J 53:110–117.

    PubMed  CAS  Google Scholar 

  • Agosin M (1985) Role of microsomal oxidations in insecticide degradation. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 647–712.

    Google Scholar 

  • Applebaum SW (1985) Biochemistry of digestion. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 4. Pergamon Press, Oxford, pp 279–311.

    Google Scholar 

  • Applebaum SW, Birk Y (1972) Natural mechanisms of resistance to insects in legume seeds. In: Rodriguez JG (ed) Insects and mite nutrition. North-Holland Publishing, Amsterdam, pp 629–636.

    Google Scholar 

  • Auda M (1986) Critical approach of the problem of insecticide resistance in Spodoptera littoralis Boisd. and Musca domestica L. PhD dissertation, State University Ghent, Ghent, Belgium.

    Google Scholar 

  • Augustinsson KB (1958) Electrophoretic separation and classification of blood plasma esterases. Nature 181:1786–1789.

    Article  PubMed  CAS  Google Scholar 

  • Belloncik S, Charpentier G, Tian L (1997) Development of four cell line from the Colorado potato beetle (Leptinotarsa decemlineata). In: Maramorosch K, Mitsuhashi J (eds) Invertebrate cell culture—novel directions and biotechnology applications. Science Publishers, New Hamp¬shire, pp3–10.

    Google Scholar 

  • Billings PC, St Clair WH, Maki PA, Kennedy AR (1992) Distribution of the Bowman-Birk protease inhibitor in mice following oral administration. Cancer Lett 62:191–197.

    Article  PubMed  CAS  Google Scholar 

  • Black BC, Hollingworth RM, Ahammadsahib KI, Kukel CD, Donovan S (1994) Insecticidal action and mitojchondrial uncoupling activity of AC-303,630 and related halogenated pyrroles. Pestic Biochem Physiol 50:115–128.

    Article  CAS  Google Scholar 

  • Broadway RM, Duffey SS (1986) The effect of dietary protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol 32:673–680.

    Article  CAS  Google Scholar 

  • Chang SC (1978) Conjugation: the major metabolic pathway of C14diflubenzuron in the housefly. J Econ Entomol 71:31–39.

    PubMed  CAS  Google Scholar 

  • Chang SC, Stokes JB (1979) Conjugation: the major metabolic pathway of C14diflubenzuron in the boll weevil (Anthonomus grandis grandis Boheman). J Econ Entomol 72:15–19.

    CAS  Google Scholar 

  • Chapman RF (1985a) Coordination of digestion. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 4. Pergamon Press, Oxford pp 213–240.

    Google Scholar 

  • Chapman RF (1985b) Structure of the digestive system. In: Kerkut.GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 4. Pergamon Press, Oxford, pp 165–212.

    Google Scholar 

  • Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryzae sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9:957–962.

    Article  Google Scholar 

  • Conner WE, Wilkinson CF, Morse RA (1978) Penetration of insecticides through the foregut of the honeybee (Apis mellifera L.). Pestic Biochem Physiol 9:131–139.

    Article  CAS  Google Scholar 

  • Cunningham I (1986) Infectivity of Trypanosoma rhodesiense cultivated at 28 °C with various tsetse fly tissues. J Protozool 33:226–231.

    PubMed  CAS  Google Scholar 

  • Dadd RH (1970) Digestion in insects. In: Florkin M, Scheer BT (eds) Chemical zoology, vol 5. Academic Press, New York, pp 117–145.

    Google Scholar 

  • Dade WB, Jumars PA, Penry DL (1990) Supply-side optimization: maximizing absorptive rates. In: Hughes RN (ed) Behavioral mechanisms of food selection. Springer, Berlin Heidelberg New York, pp 531–556.

    Google Scholar 

  • Darvas B, Pap L, Kelemen M, Polgar LA (1998) Synergistic effects of verbutin with dibenzoylhy- drazine-type ecdysteroid agonists on larvae of Aedes aegypti (Diptera; Culicidae). J Econ Entomol 91:1260–1264.

    CAS  Google Scholar 

  • Dauterman WC (1985) Insect metabolism: extramicrosomal. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 713–730.

    Google Scholar 

  • Dauterman WC, Hodgson E (1978) Detoxification mechanisms in insects. In: Rockstein M (ed) Biochemistry of insects. Academic Press, New York, pp 541–577.

    Google Scholar 

  • De Clercq P, Vinuela E, Smagghe G, Degheele D (1995) Transport and kinetics of distribution of diflubenzuron and pyriproxyfen in the beet armyworm Spodoptera exigua and its predator Podisus maculiventris. Entomol Exp Appl 76:189–194.

    Article  Google Scholar 

  • Devonshire AL, Moores GD, ffrench-Constant RH (1986) Detection of insecticide resistance by immunological estimation of carboxylesterase activity in Myzus persicae (Sulzer) and cross reaction of the antiserum with Phorodon humili (Schrank) (Hemiptera: Aphilidae). Bull Entomol Res 76:97–107.

    Article  CAS  Google Scholar 

  • Dhadialla TS, Carlson GR, Le DP (1998) New insecticides with ecdysteroidal and juvenile hormone activity. Annu Rev Entomol 43:545–569.

    Article  PubMed  CAS  Google Scholar 

  • Dougherty E, Loeb MJ, Narang N, Shapiro M (1998) Use of midgut cell cultures to elucidate the mode of action for fluorescent brighteners. Baculovirus Insect Cell Culture Conference.

    Google Scholar 

  • Dow JAT (1986) Insect midgut function. Adv Insect Physiol 19:187–328.

    Article  CAS  Google Scholar 

  • El-Guindy MA, El-Rafai ARM, Abdel-Satter MM (1983) The pattern of cross-resistance to insecticides and juvenile hormone analogues in a diflubenzuron-resistant strain of the cotton leaf- worm, Spodoptera littoralis. Pestic Sei 14:235–245.

    Article  CAS  Google Scholar 

  • El Saidy MF (1991) Biological and biochemical activities of benzoylphenylureas and conventional insecticides on Spodoptera littoralis. PhD Diss, State University Ghent, Ghent, Belgium, 339 pp.

    Google Scholar 

  • El Saidy MF, Auda M, Degheele D (1989) Detoxification mechanism of diflubenzuron and teflubenzuron in the larvae of Spodoptera littoralis (Boisd.). Pestic Biochem Physiol 35: 211–222.

    Article  Google Scholar 

  • El Saidy MF, Auda M, Degheele D (1990) Esterases and resistance to organophosphorus insecticides in Spodoptera littoralis. Med Fac Landbouww Rijksuniv Gent 55:565–576.

    Google Scholar 

  • Enzyme nomenclature (1978) Recommendations of the nomenclature committee of the international union of biochemistry on the nomenclature and classification of enzymes. Academic Press, New York.

    Google Scholar 

  • Estabrook RW, Baron J, Franklin M, Mason I, Waterman M, Peterson J (1972) Cytochrome P-450: panacae or plague? In: Schultz J, Cameron BF (eds) The molecular basis of electron transport. Academic Press, New York, pp 197–230.

    Google Scholar 

  • Ford MG, Greenwood R, Thomas PJ (1981a) The kinetics of insecticide action. I. The properties of a mathematical model describing insect pharmacokinetics. Pestic Sci 12:175–198.

    CAS  Google Scholar 

  • Ford MG, Greenwood R, Thomas PJ (1981b) The kinetics of insecticide action, II The relationship between the pharmacokinetics of substituted benzoyl (1R, S)-cis, trans-chrysanthemates and their relative toxicities to mustard beetles (Phaedon cochleariae Fab.). Pestic Sci 12: 265–284.

    Article  CAS  Google Scholar 

  • Gatehouse JA, Powell K, Edmonds H (1996) Genetic engineering of rice for resistance to homopteran insect pests. Rice Genet 111:18–200.

    Google Scholar 

  • Giordana B, Sacchi VF, Parenti P, Hanozet GM (1989) Amino acid transport systems in intestinal brush-border membranes from lepidopteran larvae. Am J Physiol 257:494–500.

    Google Scholar 

  • Grassé P-P (ed) (1949) Traité de zoologie, vol 9. Masson and Cie, Paris.

    Google Scholar 

  • Grassé P-P (ed) (1951) Traité de zoologie, vol 10. Masson and Cie, Paris.

    Google Scholar 

  • Gupta BL, Hall TA (1979) Quantitative electron probe X-ray microanalysis of electrolyte elements within epithelial tissue compartments. Fed Proc 38:144–153.

    PubMed  CAS  Google Scholar 

  • Hakim RS, Hakim FT, Loeb MJ (1997) Growth of Manduca sexta epithelial cells in the establishment of a primary culture. In: Maramorosch K, Mitsuhashi J (eds) Invertebrate cell culture. Novel directions and biotechnology applications. Science Publishers, New Hampshire, pp 19–24.

    Google Scholar 

  • Hammock BD, Quistad GB (1981) Metabolism and mode of juvenile hormone, juvenoids, and other insect growth regulators. In: Hutson DH, Roberts TR (eds) Progress in pesticide biochemistry, vol 1. Wiley, New York, pp 1–83.

    Google Scholar 

  • House HL (1974) Digestion. In: Rockstein M (ed) The physiology of Insecta. Academic Press, New York, pp 63–117.

    Google Scholar 

  • Ishaaya I (1986) Nutritional and allelochemical insect plant interactions relating to digestion and food intake: some examples. In: Miller JR, Miller TA (eds) Insect-plant interactions, vol 7. Springer, Berlin Heidelberg New York, pp 291–333.

    Google Scholar 

  • Ishaaya I, Casida JE (1980) Properties and toxicological significance of esterases hydrolyzing permethrin and cypermethrin in Trichoplusia ni larval gut integument. Pestic Biochem Physiol 14:178–184.

    Article  CAS  Google Scholar 

  • Ishaaya I, Degheele D (1988) Properties and toxicological significance of diflubenzuron hydrolase activity in Spodoptera littoralis larvae. Pestic Biochem Physiol 32:180–187.

    Article  CAS  Google Scholar 

  • Ishaaya I, Moore I, Joseph D (1971) Protease and amylase activity in larvae of the Egyptian cotton leafworm, Spodoptera littoralis. J Insect Physiol 17:945–953.

    Article  CAS  Google Scholar 

  • Jongsma M, Bakker P, Peters D, Bosch D, Stiekema W (1995) Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc Natl Acad Sci USA 92:8041–8045.

    Article  PubMed  CAS  Google Scholar 

  • Khan MA (1964) Studies on the secretion of digestive enzymes in Locusta migratoria L. II. Invertase activity. Entomol Exp Appl 7:125–130.

    Article  Google Scholar 

  • Klocke JA (1987) Natural plant compounds useful in insect control. In: Waller GR (ed) ACS symposium series no 330. American Chemical Society, Washington, DC, pp 396–415.

    Google Scholar 

  • Lawrence PO (1997) Insect cell culture: an under-exploited resource for the study of parasite- host interactions. In: Maramorosch K, Mitsuhashi J (eds) Invertebrate cell culture. Novel directions and biotechnology applications. Science Publishers, New Hampshire, pp279–287.

    Google Scholar 

  • Lehane MJ, Billingsley PF (1996) Biology of the insect midgut. Chapman and Hall, London, 486 pp.

    Google Scholar 

  • Loeb MJ, Hakim RS (1996) Insect midgut epithelium in vitro: an insect stem cell system. J Insect Physiol 42:1103–1111.

    Article  CAS  Google Scholar 

  • Maddrell SHP, Gardiner BOC (1980) The permeability of the cuticular lining of the insect alimentary canal. J Exp Biol 85:227–237.

    CAS  Google Scholar 

  • Mayer RT, Durrant JL (1979) Preparation of homogeneous NADPH cytochrome c(P-450) reductase EC-1.6.2.4 from houseflies using affinity chromatography techniques. J Biol Chem 254:756–761.

    PubMed  CAS  Google Scholar 

  • McKenzie JA (1996) Ecological and evolutionary aspects of insecticide resistance. Landes/Academic Press, Austin, 185 pp.

    Google Scholar 

  • McKenzie JA, Batterham P (1994) The genetic, molecular and phenotypic consequences of selection for insecticide resistance. Trends Ecol Evol 9:166–169.

    Article  PubMed  CAS  Google Scholar 

  • Mayer SE, Melmon KL, Gilman AG (1980) The dynamics of drug, absorption, distribution and elimination. In: Gilman A et al. (eds) The pharmacological basis of therapeutics. Macmillan, New York, pp 1–24.

    Google Scholar 

  • Moffit HR, Westgrad PH, Mantey KD, Van de Baan HE (1988) Resistance to diflubenzuron in codling moth (Lepidoptera: Tortricidae). J Econ Entomol 81:1511–1515.

    Google Scholar 

  • Nakagawa Y, Smagghe G, Kugimiya S, Hattori K, Ueno T, Tirry L, Fujita T (1999) Quantitative structure-activity studies of insect growth regulators. XVI. Substituent effects of dibenzoyl- hydrazines on the insecticidal activity to Colorado potato beetle Leptinotarsa decemlineata. Pestic Sci 55:909–918.

    Article  CAS  Google Scholar 

  • O’Brien RDO (1967) Insecticides, action and metabolism. Academic Press, New York, 258 pp.

    Google Scholar 

  • Palli SR, Sohi SS, Cook BJ, Primavera M, Retnakaran A (1997) Screening of 12 continuous cell lines for apoptosis. In: Maramorosch K, Mitsuhashi J (eds) Invertebrate cell culture. Novel directions and biotechnology applications. Science Publishers, New Hampshire, pp 52–60.

    Google Scholar 

  • Penry DL, Jumars PA (1987) Modeling animal guts as chemical reactors. Am Nat 129:69–96.

    Article  CAS  Google Scholar 

  • Pimprikar GD, Georghiou GP (1979) Mechanisms of resistance to diflubenzuron in the housefly, Musca domestica L. Pestic Biochem Physiol 12:10–22.

    Article  CAS  Google Scholar 

  • Reeck GR, Kramer KJ, Baker JE, Kanost MR, Fabrick JA, Behnke GA (1997) Proteinase inhibitors and resistance of transgenic plants to insects. In: Carozzi N, Koziel M (eds) Advances in insect control: the role of transgenic plants. Taylor and Francis, London, pp 157–183.

    Google Scholar 

  • Reynolds SE (1990) Feeding caterpillars: maximizing or optimizing food acquisition? In: Mellinger J (ed) Animal nutrition and transport processes 1. Nutrition in wild and domestic animals, vol 5. Karger, Basel, pp 106–118.

    Google Scholar 

  • Retnakaran A, Granett J, Ennis T (1985) Insect growth regulators. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 529–601.

    Google Scholar 

  • Reuveni M, Dunn PE (1994) Proline transport into brush order membrane vesicles from the midgut of Manduca sexta larvae. Comp Biochem Physiol 107A:685–691.

    Article  CAS  Google Scholar 

  • Santos CD, Ferreira C, Terra WR (1983) Consumption of food and spatial organization of diges¬tion in the casava hornworm, Erinnyis ello. J. Insect Physiol 29:707–714.

    Article  CAS  Google Scholar 

  • Sauphanor B, Brosse V, Monier C, Bouvier JC (1998) Differential ovicidal and larvicidal resistance to benzoylureas in the codling moth, Cydia pomonella. Entomol Exp Appl 88:247–253.

    Article  CAS  Google Scholar 

  • Schuyesmans S (1998) Relation between toxicity and enzyme activity for new insect growth regulators in the beet armyworm Spodoptera exigua (in Flemish). MSc dissertation, University Ghent, Ghent, Belgium, p 71.

    Google Scholar 

  • Scott (1990) Investigating mechanisms on insecticide resistance: methods, strategies, and pitfalls. In: Roush RT, Tabashnik BE (eds) Pesticide resistance in arthropods. Chapman and Hall, New York, pp 39–57.

    Google Scholar 

  • Shah AH, Guthrie FE (1970) Penetration of insecticides through the isolated gut of insects and mammals. Comp Gen Pharmacol 1:391–399.

    Article  PubMed  CAS  Google Scholar 

  • Shah AH, Guthrie FE (1971) In vitro metabolism of insecticides during midgut penetration. Pestic Biochem Physiol 1:1–10.

    Article  CAS  Google Scholar 

  • Shah PV, Dauterman WC, Gunthrie FE (1972) Penetration of a series of dialkoxy analogs of dimethoate through the isolated gut of insects and mammals. Pestic Biochem Physiol 2:324–330.

    Article  CAS  Google Scholar 

  • Singh DP (1986) Breeding for resistance to diseases and insect pests. Springer, Berlin Heidelberg New York, pp 35–61.

    Google Scholar 

  • Still GG, Leopold RA (1978) The elimination of (N-[[4-chlorophenyl)amino] carbonyl]-2,6-difluorobenzamide) by the boll weevil. Pestic Biochem Physiol 9:304–312.

    Article  CAS  Google Scholar 

  • Smagghe G (1995) Nonsteroidal ecdysteroid agonists: biological activity and insect specificity PhD Diss, University Ghent, Ghent, Belgium, 118pp.

    Google Scholar 

  • Smagghe G, Degheele D (1993) Toxicity, pharmacokinetics, and metabolism of the first nonsteroidal ecdysteroid agonist, RH 5849, on Spodoptera exempta (Walker), Spodoptera exigua (Hubner), and Leptinotarsa decemlineata (Say). Pestic Biochem Physiol 46:149–160.

    Article  CAS  Google Scholar 

  • Smagghe G, Degheele D (1994a) Action of a novel nonsteroidal ecdysteroid mimic, tebufenozide (RH-5992), on insects of different orders. Pestic Sci 42:85–92.

    Article  CAS  Google Scholar 

  • Smagghe G, Degheele D (1994b) The significance of pharmacokinetics and metabolism to the biological activity of RH-5992 (tebufenozide) in Spodoptera exempta, Spodoptera exigua, and Leptinotarsa decemlineata. Pestic Biochem Physiol 49:224–234.

    Article  CAS  Google Scholar 

  • Smagghe G, Audenaert L, Degheele D (1995) Tebufenozide: is toxicity correlated with pharmacokinetics and metabolism in different strains of the Egyptian cotton leafworm? Med Fac Landbouw Toeg Biol Wet Univ Gent 60:1015–1016.

    CAS  Google Scholar 

  • Smagghe G, Eelen H, Verschelde E, Richter K, Degheele D (1996) Differential effects of nonsteroidal ecdysteroid agonists in Coleoptera and Lepidoptera: analysis on evagination and receptor binding in imaginal discs. Insect Biochem Mol Biol 26:687–695.

    Article  CAS  Google Scholar 

  • Smagghe G, Dhadialla TS, Derycke S, Tirry L, Degheele D (1998a) Tebufenozide in susceptible and artificially tolerant beet armyworm. Pestic Sci 54:27–34.

    Article  CAS  Google Scholar 

  • Smagghe G, Wesemael W, Carton B, Tirry L (1998b) Tebufenozide and methoxyfenozide against the beet armyworm Spodoptera exigua. Proc Brighton Crop Protection Conf-Pests Dis, Brighton, UK, vol 1, pp 311–312.

    Google Scholar 

  • Smagghe G, Carton B, Heirman A, Tirry L (1999a) Toxicity and impact of kinetics, metabolism and binding of nonsteroidal ecdysone agonists in a susceptible and resistant strain of the cotton leafworm. Proc XlVth Int Plant Prot Congr, Jerusalem, Israel, p 152.

    Google Scholar 

  • Smagghe G, Carton B, Wesemael W, Ishaaya I, Tirry L (1999b) Ecdysone agonists: mechanism and application on Spodoptera species. Pestic Sci 55:243–389.

    Article  Google Scholar 

  • Smagghe G, Medina P, Schuyesmans S, Tirry L, Viñuela E (1999c) Insecticide resistance monitoring and potential of novel insect growth regulators for managing the beet armyworm (Spodoptera exigua Hübner). Proc Combating Insecticide Resistance, Thessaloniki, Greece, pp 70–78.

    Google Scholar 

  • Smagghe G, Nakagawa Y, Carton B, Mourad AK, Tirry L (1999d) Comparative ecdysteroid action of ring-substituted dibenzoylhydrazines in Spodoptera exigua. Arch Insect Biochem Physiol 41:42–53.

    Article  CAS  Google Scholar 

  • Sohi SS, Lalouette W, Macdonald JA, Gringorten JL, Budae CB (1993) Establishment of continuous midgut cell lines of spruce budworm (Lepidoptera: Tortricidae). In Vitro Cell Dev Biol 29A:56A.

    Google Scholar 

  • Still GG, Leopold RA (1978) The elimination of (N-[[(4-chlorophenyl) amino] carbonyl]-2,6- diflubenzamide) by the boll weevil. Pestic Biochem Physiol 9:304–312.

    Article  CAS  Google Scholar 

  • Terra W, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol 109B:l–62.

    Google Scholar 

  • Turunen S (1985) Absorption. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 4. Pergamon Press, Oxford, pp 241–277.

    Google Scholar 

  • Van Laecke K (1993) Insecticide-detoxification mechanisms in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). PhD Diss, University of Ghent, Ghent, Belgium, p 202.

    Google Scholar 

  • Van Laecke K, Smagghe G, Degheele D (1995) Detoxifying enzymes in greenhouse and laboratory strain of beet armyworm (Lepidoptera: Noctuidae). J Econ Entomol 88:777–781.

    Google Scholar 

  • Welling W, Paterson (1985) Toxicodynamics of insecticides. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 603–645.

    Google Scholar 

  • Williams RT (1959) Detoxification mechanisms. Chapman and Hall, London.

    Google Scholar 

  • Woods HA, Kingsolver JG (1999) Feeding rate and the structure of protein digestion and absorption in lepidopteran midguts. Arch Insect Biochem Phsyiol 42:74–87.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Smagghe, G., Tirry, L. (2001). Insect Midgut as a Site for Insecticide Detoxification and Resistance. In: Ishaaya, I. (eds) Biochemical Sites of Insecticide Action and Resistance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59549-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59549-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67625-6

  • Online ISBN: 978-3-642-59549-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics