Skip to main content

Biochemical Processes Related to Insecticide Action: an Overview

  • Chapter
Biochemical Sites of Insecticide Action and Resistance

Abstract

Throughout modern history, man has devised various methods to combat insect pests such as the use of sulfur, chalk, wood ash and plant extracts. Further progress came with the introduction of botanical compounds such as pyrethrum, deris, quassia, and others. The inventory of insecticides used in the 19th century includes sulfur, arsenic, fluorides, soaps, kerosene and various botanicals such as nicotine, rotenone, pyrethrum, sabadilla and quassia (for more details, see Retnakaran et al. 1985; Perry et al. 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbink J (1991) The biochemistry of imidacloprid. Pflanzenschutz-Nachr Bayer 44:183–194.

    CAS  Google Scholar 

  • Albrecht CP, Sherman M (1987) Lethal and sublethal effect of avermectin Bj on three fruit fly species (Diptera: Tephritidae). J Econ Entomol 80:344–347.

    CAS  Google Scholar 

  • Andrews RE Jr, Bibilos MM, Bulla LA Jr (1985) Protease activiation of the entomocidal protoxin of Bacillus thuringiensis subsp. kurstaki. Appl Environ Microbiol 50:737–742.

    PubMed  CAS  Google Scholar 

  • Anonymous (1989) Polo (diafenthiuron, CGA 106630), Technical Data Sheet. Ciba Geigy, Basel, pp 1–18.

    Google Scholar 

  • Arena JP, Liu KK, Paress PS, Frezier EG, Cully DF, Mrozik H, Schaeffer J (1995) The mechanism of action of avermectin in Caenorhabditis elegans: correlation between activation of gluta- mate-sensitive chloride current, membrane binding and biological activity. J Parasitol 81: 286–294.

    PubMed  CAS  Google Scholar 

  • Ascher KRS (1993) Non-conventional insecticidal effects of pesticide available from the neem tree, Azadirachta indica. Arch Insect Biochem Physiol 22:433–449.

    CAS  Google Scholar 

  • Bai D, Lummis SCR, Leicht W, Breer H, Satelle DB (1991) Actions of imidacloprid and related nitromethylene on cholinergic receptor of an identified insect motor neurone. Pestic Sci 33:197–204.

    CAS  Google Scholar 

  • Barrett AGM, Curr RA, Attwood SV, Finch MAW, Richardson G (1985) The application of novel carbanion chemistry in milbemycin-avermectin synthesis. In: James NF (ed) Recent advances in the chemistry of insect control. R Soc Chem, London, pp 257–271.

    Google Scholar 

  • Becher HM, Becker P, Prokic-Immel R, Wirtz W (1983) CME, a new chitin synthesis inhibiting insecticide. Brighton Crop Prot Conf 1:408–415.

    CAS  Google Scholar 

  • Bergamasco R, Horn DHS (1980) The biological activities of ecdysteroids and ecdysteroid analogues. In: Hoffman JA (ed) Progress in ecdysone research. Elsevier, Amsterdam, pp 299–324.

    Google Scholar 

  • Bloomquist JR (1994) Cyclodiene resistance at the insect GABA receptor/chloride channel complex confers broad cross-resistance to convulsants and experimental phenylpyrazole insecticides. Arch Insect Biochem Physiol 26:69–79.

    PubMed  CAS  Google Scholar 

  • Bulla LA Jr, Kramer KJ, Cox DJ, Jones BL, Davidson LI, Lookhart GL (1981) Purification and characterization of the entomocidal protoxin of Bacillus thuringiensis. J Biol Chem 256:3000–3004.

    PubMed  CAS  Google Scholar 

  • Cahill M, Denholm I (1999) Managing resistance to chloronicotinyl insecticides: rhetoric or reality? In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, pp 253–270.

    Google Scholar 

  • Chandler LD, Pair SD, Harrison WE (1992) RH-5992, a new insect growth regulator active against corn earworm and fall armyworm (Lepidoptera: Noctuidae). J Econ Entomol 85:1099–1103.

    CAS  Google Scholar 

  • Chilcott CN, Knowles BH, Ellar DJ, Brobniewski FA (1990) Mechanism of action of Bacillus thuringiensis israelensis paraproposal body. In: deBarjac H, Southerland DJ (eds) Bacterial control of mosquitoes and black flies. Rutgers Univ Press, New Brunswick, NJ, pp 45–65.

    Google Scholar 

  • Cohen E (1985) Chitin synthetase activity and inhibition in different insect microsomal preparations. Experientia 41:470–472.

    CAS  Google Scholar 

  • Cohen E (1987) Chitin biochemistry: synthesis and inhibition. Annu Rev Entomol 322:71–93.

    Google Scholar 

  • Cohen E, Casida JE (1980) Inhibition of Tribolium gut synthetase.Pestic Biochem Physiol 13: 129–136.

    CAS  Google Scholar 

  • Cole L, Nicholson R, Casida JE (1993) Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pestic Biochem Physiol 46:47–54.

    CAS  Google Scholar 

  • Colliot F, Kukorowski KA, Hawkins DW, Robert DA (1992) Fipronil: a new soil and foliar broad spectrum insecticide. Brighton Crop Protection Conference: pests and diseases. British Crop Protection Council, Farnham, UK, pp 29–34.

    Google Scholar 

  • Cox DL, Knight AL, Biddinger DG, Lasota JA, Pikounis B, Hull LA, Dybas RA (1995) Toxicity and field efficacy of avermectins against codling moth (Lepidoptera: Tortricidae) on apples. J Econ Entomol 88:708–715.

    CAS  Google Scholar 

  • De Cock A, Degheele D (1991) Effects of buprofezin on the ultrastructure of the third instarcuticle of Trialeurodes vaporariorum. Tissue Cell 23:755–762.

    PubMed  Google Scholar 

  • De Cock A, Degheele D (1998) Buprofezin: a novel chitin synthesis inhibitor affecting specifically planthoppers, whiteflies and scale insects. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin Heidelberg New York, pp 74–91.

    Google Scholar 

  • DeLoach JR, Meola SM, Mayer RT, Thompson JM (1981) Inhibition of DNA synthesis by difluben- zuron in pupae of the stable fly Stomoxys calcitrans (L.). Pestic Biochem Physiol 15:172–180.

    CAS  Google Scholar 

  • Deng Y, Casida JE (1992) Housefly head GABA-gated chloride channel: toxicological relevant binding site for avermectins coupled to site for ethynyl-bicycloortho benzoate. Pestic Biochem Physiol 43:116–122.

    CAS  Google Scholar 

  • Dennehy TJ, Williams L (1997) Management of resistance in Bemisia in Arizona cotton. Pestic Sci 51:398–406.

    CAS  Google Scholar 

  • Dhadialla TS, Carlson GR, Le DP (1998) New insecticides with ecdysteroidal and juvenile hormone activity. Annu Rev Entomol 45:545–569.

    Google Scholar 

  • Dorn J, Frischknecht ML, Martinez V, Zurfliih R, Fischer U (1981) A novel non-neurotoxic insecticide with a broad activity. Z Pflanzenkr Pflanzenschutz 88:269–275.

    CAS  Google Scholar 

  • Dybas RA (1989) Abamectin use in crop protection. In: Campbell WC (ed) Ivermectin and abamectin. Springer, Berlin Heidelberg New York, pp 287–310.

    Google Scholar 

  • Elbert A, Nauen R, Leicht W (1998) Imidacloprid, a novel chloronicotinyl insecticide: biological activity and agricultural importance. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin Heidelberg New York, pp 50–73.

    Google Scholar 

  • Ely J (1993) The engineering of plants to express Bacillus thuringiensis δ-endotoxins. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 105–124.

    Google Scholar 

  • Fischer MH, Mrozik H (1989) Chemistry. In: Campbell WC (ed) Ivermectin and abamectin. Springer, Berlin Heidelberg New York, pp 1–23.

    Google Scholar 

  • Flückiger CR, Kristinsson H, Senn R, Rindlisbacher A, Buholzer H, Voss G (1992a) CGA 215’944 - a novel agent to control aphids and whiteflies. Brighton Crop Prot Conf (Pests and Diseases) 1:43–50.

    Google Scholar 

  • Flückiger CR, Senn R, Buholzer H (1992b) CGA 215’944 - opportunities for use in vegetables. Brighton Crop Prot Conf (Pests and Diseases) 3:1187–1192.

    Google Scholar 

  • Fuog D, Fergusson SJ, Flückiger C (1998) Pymetrozine: a novel insecticide affecting aphids and whiteflies. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin Heidelberg New York, pp 40–49.

    Google Scholar 

  • Grosscurt AC (1978) Effect of diflubenzuron on mechanical penetrability, chitin formation, and structure of the elytra of Leptinotarsa decemlineata. J Insect Physiol 24:827–831.

    CAS  Google Scholar 

  • Grosscurt AC, Anderson SO (1980) Effect of diflubenzuron on some chemical and mechanical properties of the elytra of Leptinotarsa decemlineata. Proc K Ned Akad Wet 83C:143–150.

    Google Scholar 

  • Haga T, Tobi T, Koyanagi R (1982) Structure activity relationship of series of benzoylpyridyloxyphenyl-urea derivatives. Abstr 5th Int Congr Pestic Chem (IUPAC), August 1982, Kyoto, p IId–7.

    Google Scholar 

  • Hajjar NP, Casida JE (1979) Structure activity relationship of benzoylphenyl ureas as toxicants and chitin synthesis inhibitors in Oncopeltus fasciatus. Pestic Biochem Physiol 11:33–45.

    CAS  Google Scholar 

  • Harrewijn P, Piron PGM (1994) Pymetrozine, a novel agent for reducing virus transmission by Myzus persicae. Brighton Crop Protection Conference (Pests and Diseases) 2:923–928.

    Google Scholar 

  • Harrewijn P, Kayser H (1997) Pymetrozine, a fast acting and selective inhibitor of aphid feeding. In situ studies with electronic monitoring of feeding behaviour. Pestic Sci 49:130–140.

    CAS  Google Scholar 

  • Heller JJ, Mattioda H, Klein E, Sagenmiiller A (1992) Field evaluation of RH-5992 on lepidopteran pests in Europe. Brighton Crop Prot Conf (Pests and Diseases) 1:59–66.

    Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal cryStÃ¥l of Bacillus thuringiensis. Microbiol Rev 53:242–255.

    PubMed  CAS  Google Scholar 

  • Horn DHS, Galbraith MN, Kelly BA, Kinnear JF, Martin MD, Middleton EJ, Virgonia CTF (1981) Moulting hormones LIII. The synthesis and biological activity of some ecdysone analogues. Aust J Chem 34:2607–2618.

    Google Scholar 

  • Horowitz AR, Ishaaya I (1994) Monitoring resistance to IGRs in the sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 87:866–871.

    CAS  Google Scholar 

  • Horowitz AR, Ishaaya I (1995) Chemical control of Bemisia - management and application. In: Gerling D, Mayer RT (eds) Bemisia: 1995 - taxonomy, biology, damage, control and management. Intercept, Andover, UK, pp 537–556.

    Google Scholar 

  • Horowitz AR, Klein M, Yablonski S, Ishaaya I (1992) Evaluation of benzoylphenyl ureas for controlling the spiny bollworm, Earias insulana (Baisd.), in cotton. Crop Prot 11:465–469.

    CAS  Google Scholar 

  • Horowitz AR, Mendelson Z, Ishaaya I (1997) Effect of abamectin mixed with mineral oil on the sweet potato whitefly (Homoptera:Aleyrodidae). J Econ Entomol 90:349–353.

    CAS  Google Scholar 

  • Horowitz AR, Mendelson Z, Weintraub PG, Ishaaya I (1998) Comparative toxicity of foliar and systemic application of acetamiprid and imidacloprid against the cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Bull Entomol Res 88:437–442.

    CAS  Google Scholar 

  • Horowitz AR, Mendelson Z, Cahill M, Denholm I, Ishaaya I (1999) Managing resistance to the insect growth regulator pyriproxyfen in Bemisia tabaci. Pestic Sci 55:272–276.

    CAS  Google Scholar 

  • Hoy MA, Cave FE (1985) Laboratory evaluation of avermectin as a selective acaricide for use with Metasciulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Exp Appl Acarol 1:139–152.

    CAS  Google Scholar 

  • Ishaaya I (1990) Benzoylphenyl ureas and other selective control agents - mechanism and application. In: Casida JE (ed) Pesticides and alternatives. Elsevier, Amsterdam, pp 365–376.

    Google Scholar 

  • Ishaaya I, Ascher KRS (1977) Effect of diflubenzuron on growth and carbohydrate hydrolases of Tribolium castaneum Phytoparasitica 5:149–158.

    CAS  Google Scholar 

  • Ishaaya I, Casida JE (1974) Dietary TH-6040 alters cuticle composition and enzyme activity of housefly larval cuticle. Pestic Biochem Physiol 4:484–490.

    CAS  Google Scholar 

  • Ishaaya I, Horowitz AR (1992) Novel phenoxy juvenile hormone analog (pyriproxyfen) suppresses embryogenesis and adult emergence of the sweet potato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 85:2113–2117.

    CAS  Google Scholar 

  • Ishaaya I, Horowitz AR (1995) Pyriproxyfen, a novel insect growth regulator for controlling whiteflies - mechanism and resistance management. Pestic Sci 43:227–232.

    CAS  Google Scholar 

  • Ishaaya I, Horowitz AR (1998) Insecticides with novel modes of action: an overview. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin Heidelberg New York, pp 1–24.

    Google Scholar 

  • Ishaaya I, Mendelson Z, Melamed-Madjar V (1988) Effect of buprofezin on embryogenesis and progeny formation of sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 81: 781–784.

    CAS  Google Scholar 

  • Ishaaya I, Mendelson Z, Horowitz AR (1993) Toxicity and growth suppression exerted by diafen-thiuron in the sweetpotato whitefly Bemisia tabaci. Phytoparasitica 21:199–204.

    CAS  Google Scholar 

  • Ishaaya I, De Cock A, Degheele D (1994) Pyriproxyfen, a potent suppressor of egg hatch and adult formation of the greenhouse whitefly (Homoptera: Aleyrodidae). J Econ Entomol 87: 1185–1189.

    CAS  Google Scholar 

  • Ishaaya I, Yablonski S, Horowitz AR (1995) Comparative toxicity of two ecdysteroid agonists, RH- 2485 and RH-5992, on susceptible and pyriproxyfen-resistant strains of the Egyptian cotton leafworm, Spodoptera littoralis. Phytoparasitica 23:139–145.

    CAS  Google Scholar 

  • Ishaaya I, Yablonski S, Mendelson Z, Mansour Y, Horowitz AR (1996) Novaluron (MCW-275), a novel benzoylphenyl urea, suppressing developing stages of lepidopteran, whitefly and leafminer pests. Brighton Crop Prot Conf (Pests and Disease), pp 1013–1020.

    Google Scholar 

  • Ishaaya I, Danme N, Tirry L (1998) Novaluron, optimization and use for the control of the beet armyworm and the greenhouse whitefly. Brighton Crop Prot Conf (Pests and Diseases), pp 49–56.

    Google Scholar 

  • Itaya W (1987) Insect juvenile hormone analogue as an insect growth regulator. Sumitomo Pyrethroid World 8:2–4.

    Google Scholar 

  • Izawa Y, Uchida M, Sugimoto T, Asai T (1985) Inhibition of chitin biosynthesis by buprofezin analogs in relation to their activity controlling Nilaparvata lugens StÃ¥l. Pestic Biochem Physiol 24:343–347.

    CAS  Google Scholar 

  • Jacobson M (ed) (1988) Focus on phytochemical pesticides: the neem tree, vol 1. CRC Press, Boca Raton.

    Google Scholar 

  • Jansson RK, Dybas RA (1998) Avermectins: biochemical mode of action, biological activity and agricultural importance. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin Heidelberg New York, pp 152–170.

    Google Scholar 

  • Kadir HA, Knowles CO (1991) Toxicological studies of the thiourea diafenthiuron in diamond- back moth (Lepidoptera: Yponomeutidae), two-spotted spider mites (Acari: Tetranychidae), and bulb mite (Acari: Acaridae). J Econ Entomol 84:780–784.

    CAS  Google Scholar 

  • Kanno H, Ikeda K, Asai T, Maekawa S (1981)2-tert-Butylimino-3-isopropyl-5-phenylperhydro-l,3,5-thiodiazin-4-one (NNI 750), a new insecticide. Brighton Crop Protection 1:56–69.

    Google Scholar 

  • Kawada H (1988) An insect growth regulator against cockroaches. Sumitomo Pyrethroid World 11:2–4.

    Google Scholar 

  • Kirst HA, Michel KH, Mynderse JS, Chao EH, Yao RC, Nakatsukasa WM, Boeck LD, Occlowitz J, Paschel JW, Deeter JB, Thompson GD (1992) Discovery, isolation and structure elucidation of a family of structurally unique fermentation-derived tetracyclic macrolides. In: Baker DR, Fenyes JG, Steffens JJ (eds) Synthesis and chemistry of agrochemicals III. Am Chem Soc, Washington, DC, pp 214–225.

    Google Scholar 

  • Klis SFL, Vijverberg HPM, van den Berken J (1991) Phenylpyrazoles, a new class of pesticides: electrophysiological investigation into basis effects. Pestic Biochem Physiol 39:210–218.

    CAS  Google Scholar 

  • Knowles BH, Ellar DJ (1986) Characterization and partial purification of a plasma membrane receptor for Bacillus thuringiensis var. krustaki lepidopteran-specific 8-endotoxin. J Cell Sci 83:89–101.

    PubMed  CAS  Google Scholar 

  • Knowles BH, Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis delta endotoxin with different insect specificity. Biochem Biophys Acta 924:509–518.

    CAS  Google Scholar 

  • Koehler PG, Patterson RJ (1991) Incorporation of pyriproxyfen in German cockroach (Dictyoptera: Blattellidae) management program. J Econ Entomol 84:917–921.

    PubMed  CAS  Google Scholar 

  • Langley P (1990) Control of the tsetse fly using a juvenile hormone mimic, pyriproxyfen. Sumitomo Pyrethroid World 15:2–5.

    Google Scholar 

  • Lasota JA, Dybas RA (1991) Avermectin, a novel class of compounds: implications for use in arthropod pest control. Annu Rev Entomol 36:96–117.

    Google Scholar 

  • Leicht W (1993) Imidacloprid - a chloronicotinyl insecticide. Pestic Outiook 4:17–21.

    CAS  Google Scholar 

  • Liu M-Y, Casida JE (1993) High affinity binding of [3H]-imidacloprid in the insect acetylcholinereceptor. Pestic Biochem Physiol 46:40–46.

    CAS  Google Scholar 

  • Masner P, Angst M, Dorn S (1987) Fenoxycarb, an insect growth regulator with juvenile hormone activity: a candidate for Heliothis virescens (F.) control on cotton. Pestic Sci 18:89–94.

    CAS  Google Scholar 

  • Mayer RT, Chen AC, DeLoach JR (1981) Chitin synthesis inhibiting insect growth regulators do not inhibit chitin synthase. Experientia 37:337–338.

    CAS  Google Scholar 

  • Mellin TN, Busch RD, Wang CC (1983) Postsynaptic inhibitions of invertebrate neuromuscular transmission by avermectin Bla. Neuropharmacology 22:89–96

    PubMed  CAS  Google Scholar 

  • Methfessel C (1992) Action of imidacloprid on the nicotinic acetylcholine receptor in rat muscle. Pflanzenschutz-Nachr Bayer 45:369–380.

    CAS  Google Scholar 

  • Mikolajczyk P, Oberlander H, Silhacek DL, Ishaaya I, Shaaya E (1994) Chitin synthesis in Spodoptera frugiperda wing imaginal discs. I. Chlorfluazuron, diflubenzuron, and tefluben- zuron inhibit incorporation but not uptake of [14C]-N-acetyl-D-glucosamine. Arch Insect Biochem Physiol 25:245–258.

    CAS  Google Scholar 

  • Mitlin N, Wiygul G, Haynes JW (1977) Inhibition of DNA synthesis in boll weevils (Anthonomusgrandis Boheman) sterilized by Dimilin. Pestic Biochem Physiol 7:559–563.

    CAS  Google Scholar 

  • Monthéan C, Potter DE (1992) Effects of RH-5849, a novel insect growth regulator, on Japanese beetle (Coleoptera: Scarabaeidae) and fall armyworm (Lepidoptera: Noctuidae) in turfgrass. J Econ Entomol 85:507–513.

    Google Scholar 

  • Mulder R, Gijswijk MT (1973) The laboratory evaluation of two promising new insecticides which interfere with cuticle deposition. Pestic Sci 4:737–745.

    CAS  Google Scholar 

  • Nagata T (1986) Timing of buprofezin application for control of the brown planthopper, Nilaparvata lugens. (Homoptera: Delphacidae). Appl Entomol Zool 21:357–362.

    CAS  Google Scholar 

  • Nauen R, Strobel J, Otsu K, Tietjen K, Erdelen C, Elbert A (1996) Aphicidal activity of imidacloprid against a carbamate and organophospate resistant Japanese strain of the tobacco feeding Myzus persicae (Homoptera: Aphididae) closely related to Myzus nicotianae. Bull Entomol Res 86:165–171.

    CAS  Google Scholar 

  • Navon A (1993) Control of lepidopteran pests with Bacillus thuringiensis. In: Entwistle PF, Cory JS, Bailey MJ, Hidds S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 125–146.

    Google Scholar 

  • Navon A, Klein M, Braun S (1990) Bacillus thuringiensis potency bioassays against Heliothis armigera, Earias insulana and Spodoptera littoralis larvae based on standardized diets. J Invertebr Pathol 55:387–393.

    PubMed  CAS  Google Scholar 

  • Oberlander H, Silhacek DL (1998) New perspectives on the mode of action of benzoylphenyl urea insecticides. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin Heidelberg New York, pp 92–105.

    Google Scholar 

  • Palli SR, Ladd TR, Sohi SS, Cook BJ, Retnakaran A (1996) Cloning and developmental expression of Choristoneura hormone receptor 3, an ecdysone-inducible gene and a member of the steroid hormone receptor superfamily. Insect Biochem Mol Biol 26:485–499.

    PubMed  CAS  Google Scholar 

  • Peleg BA (1988) Effect of new phenoxy juvenile hormone analog on California red scale (Homoptera: Diaspididae), Florida wax scale (Homoptera: Coccidae) and the ectoparasite Aphytis holoxanthus DeBache (Hymenoptera: Aphelinidae). J Econ Entomol 81: 88–92.

    CAS  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff (1990) Insect resistant cotton plants. Biotechnology 8:939–942.

    PubMed  CAS  Google Scholar 

  • Perry AS, Yamamoto I, Ishaaya I, Perry RY (1998) Insecticides in agriculture and environment: retrospects and prospects. Springer, Berlin Heidelberg New York, pp 1–3

    Google Scholar 

  • Pluschkell U, Horowitz AR, Ishaaya I (1999) Effect of milbemectin on the sweetpotato whitefly Bemisia tabaci. Phytoparasitica 27:183–191.

    CAS  Google Scholar 

  • Post LC, de Jong BJ, Vincent WR (1974) l-(2,6-Disubstituted benzoyl)-3-phenylurea insecticides: inhibitors of chitin synthesis. Pestic Biochem Physiol 4:473–483.

    CAS  Google Scholar 

  • Retnakaran A, Granett J, Ennis T (1985) Insect growth regulators. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 529–601.

    Google Scholar 

  • Retnakaran A, Hiruma K, Palli SR, Riddiford LM (1995) Molecular analysis of the mode of action of RH-5992, a lepidopteran-specific, non-steroidal ecdysteroid agonist. Insect Biochem Mol Biol 25:109–117.

    CAS  Google Scholar 

  • Riddiford LM (1985) Hormone action at the cellular level. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 18. Pergamon Press, Oxford, pp 37–84.

    Google Scholar 

  • Riddiford LM, Osir EO, Fikinghoff CM, Green JM (1987) Juvenile hormone analog binding in Manduca epidermis. Insect Biochem 17:1039–1043.

    CAS  Google Scholar 

  • Rohrer SP, Birzin ET, Costa SD, Arena JP, Hayes EC, Schaeffer JH (1995) Identification of neuronspecific ivermectin binding sites in Drosophila melanogaster and Schistocerca americana. Insect Biochem Mol Biol 25:11–17.

    PubMed  CAS  Google Scholar 

  • Ruder FJ, Benson JA, Kayser H (1992) The mode of action of the insecticide/acaricide diafenthiuron. In: Otto D, Weber B (eds) Insecticides: mechanism of action and resistance. Intercept, Andover, UK, pp 263–276.

    Google Scholar 

  • Salgado VL (1998) Studies on the mode of action of Spinosad: insect symptoms and physiological correlates. Pestic Biochem Physiol 60:91–92.

    CAS  Google Scholar 

  • Sankyo Co (1997) Technical datasheet on milbemectin. Sankyo Co, Tokyo, Japan

    Google Scholar 

  • Sbragia R, Bisabri-Ershadi, Rigterink RH (1983) XRD-473, a new acylurea insecticide effective against Heliothis. Brighton Crop Prot Conf 1:417–424.

    CAS  Google Scholar 

  • Scharf ME, Siegfried BD (1999) Toxicity and neurophysiological effects of fipronil and fipronil sulfone on the western corn rootworm (Coleoptera: Chrysomelidae). Arch Insect Biochem Physiol 40:150–156.

    CAS  Google Scholar 

  • Schmutterer H (ed) (1995) Neem tree - source of unique natural products for integrated pest management, medicine industry and other purposes. VCH, Weinheim, 696 pp.

    Google Scholar 

  • Schwinger M, Harrewiju P, Kayser H (1994) Effect of pymetrozine (CGA 215’944), a novel aphi- cide, on feeding behavior of aphids. Proc 8th IUPAC Int Cong Pestic Chem, Washington, DC 1:230.

    Google Scholar 

  • Scott JG, Wen Z (1997) Toxicity of fipronil to susceptible and resistant strain of German cockroaches (Dictyoptera: Blattelidae) and houseflies (Diptera: Muscidae). J Econ Entomol 90:1152–1156.

    CAS  Google Scholar 

  • Silhacek DL, Oberlander H, Procheron P (1990) Action of RH-5849, a non-steroidal ecdysteroid mimic, on Plodia interpunctella (Hiibner) in vivo and in vitro. Arch Insect Biochem Physiol 15:201–212.

    CAS  Google Scholar 

  • Silverman J, Liang D (1999) Effect of fipronil on bait formulation-based aversion in the German cockroach (Dictyoptera: Blattelidae). J Econ Entomol 92:886–889.

    CAS  Google Scholar 

  • Smagghe G, Degheele D (1992) Effect of RH-5849, the first nonsteroidal ecdysteroid agonist, on larvae of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Arch Insect Biochem Physiol 21:119–128.

    CAS  Google Scholar 

  • Smagghe G, Degheele D (1994) Action of a novel nonsteroidal ecdysteroid mimic, tebufenozide (RH-5992), on insects of different orders. Pestic Sci 42:85–92

    CAS  Google Scholar 

  • Smagghe G, Degheele D (1998) Ecdysone agonists: mechanisms and biological activity. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin Heidelberg New York, pp 25–39

    Google Scholar 

  • Soltani N, Besson MT, Delachambre J (1984) Effect of diflubenzuron on the pupal-adult development of Tenebrio molitor L. (Coleoptera: Tenebrionidae): growth and development, cuticle secretion, epidermal cell density and DNA synthesis. Pestic Biochem Physiol 21:256–264.

    CAS  Google Scholar 

  • Steinmann A, Stamm E, Frei B (1990) Chemodynamics in research and development of new plant protection agents. Pestic Outlook l(3):3–7.

    Google Scholar 

  • Streibert HP, Drabek J, Rindlisbacher A (1988) CGA 106630 - a new type of acaricide/insecticide for the control of the sucking pest complex in cotton and other crops. Brighton Crop Prot Conf (Pests and Diseases) 1:25–33.

    Google Scholar 

  • Tomizawa M, Yamamoto I (1992) Binding of nicotinoids and the related compounds to the insect nicotinic acetylcholine receptor. J Pestic Sci 17:231.

    CAS  Google Scholar 

  • Tomizawa M, Otsuka H, Miyamoto T, Eldefrawi ME, Yamamoto I (1995a) Pharmacological characteristics of insect nicotinic acetylcholine receptor with its ion channel and the comparison of the effect of nicotinoids and neonicotinoids. J Pestic Sci 20:57–64.

    CAS  Google Scholar 

  • Tomizawa M, Otsuka H, Miyamoto T, Yamamoto I (1995b) Pharmacological effects of imidacloprid and its related compounds on the nicotinic acetylcholine receptor with its ion channel from the Torpedo electric organ. J Pestic Sci 20:49–56.

    CAS  Google Scholar 

  • Tompson-G, Hutchins S (1999) Spinosad. Pestic Outlook 10:78–81.

    Google Scholar 

  • Uchida M, Asai T, Sugimoto T (1985) Inhibition of cuticle deposition and chitin biosynthesis by a new insect growth regulator buprofezin in Nilaparvata lugens StÃ¥l. Agric Biol Chem 49:1233–1234.

    CAS  Google Scholar 

  • Van Eck WH (1979) Mode of action of two benzoylphenyl ureas as inhibitors of chitin synthesis in insects. Insect Biochem 9:295–300

    Google Scholar 

  • Van Rie J, Jansens S, Hofte H, Degheele D, Van Mellaert H (1989) Specificity of Bacillus thuringiensis δ-endotoxin: importance of specific receptors on the brush border membrane of the midgut of target insects. Eur J Biochem 186:239–247.

    PubMed  Google Scholar 

  • Van Rie J, Jansens S, Hofte H, Degheele D, Van Mellaert H (1990) Receptors on the brush border membrane of the insect mid-gut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ Microbiol 56:1378–1385.

    PubMed  Google Scholar 

  • Ward ES, Ellar DJ (1986) Bacillus thuringiensis var. israelensis delta endotoxin: nucleotide sequence and characterization of the transcripts in Bacillus thuringiensis and Escherichia coli. J Mol Biol 191:1–11.

    PubMed  CAS  Google Scholar 

  • Whalon ME, McGaughey WH (1998) Bacillus thuringiensis: use and resistance management. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin Heidelberg New York, pp 106–137.

    Google Scholar 

  • Wing KD (1988) RH-5849, a nonsteroidal ecdysone agonist: effect on Drosophila cell line. Science 241:467–469.

    PubMed  CAS  Google Scholar 

  • Wing KD, Slawecki RA, Carlson GR (1988) RH-5849, a nonsteroidal ecdysone agonist: effect on larval lepidoptera. Science 241:470–472.

    PubMed  CAS  Google Scholar 

  • Wright DJ, Loy A, Green ASJ, Dybas RA (1985) The translaminar activity of abamectin (MK-936) against mites and aphids. Meded Fac Landbouwwet Rijksuniv Gent 50:633–637.

    CAS  Google Scholar 

  • Yamamoto I, Yabuta G, Tomizawa M, Saito T, Miyamoto T, Kagabu S (1995) Molecular mechanism of selective toxicity of nicotinoids and neonicotinoids. J Pestic Sci 20:33–40.

    CAS  Google Scholar 

  • Yanase D, Andoh A (1989) Porphyrin synthesis involvement in diphenyl ether-like mode of action of TNPP-ethyl, a novel phenylpyrazole herbicide. Pestic Biochem Physiol 35:70–79.

    CAS  Google Scholar 

  • Yasui M, Fukada M, Mackawa S (1987) Effect of buprofezin on reproduction of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Appl Entomol Zool 22:266–271.

    CAS  Google Scholar 

  • Zhang Z, Sanderson JP (1990) Relative toxicity of abamectin to the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) and the two-spotted spider mite (Acari: Tetranychidae). J Econ Entomol 83:1783–1790.

    CAS  Google Scholar 

  • Zlotkin E (1999) The insect voltage-gated sodium channel target of insecticides. Annu Rev Entomol 44:429–455.

    PubMed  CAS  Google Scholar 

  • Zwaart R, Oortigiesen M, Vijverberg HPM (1994) Nitromethylene heterocycles: selective agonists of nicotinic receptors in locust neurons compared to mouse N1E–115 and BC3H1 cells. Pestic Biochem Physiol 48:202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Ishaaya, I. (2001). Biochemical Processes Related to Insecticide Action: an Overview. In: Ishaaya, I. (eds) Biochemical Sites of Insecticide Action and Resistance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59549-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59549-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67625-6

  • Online ISBN: 978-3-642-59549-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics