Skip to main content

Monitoring of Residual Disease in Patients with Chronic Myelogenous Leukemia Using Specific Fluorescent Hybridization Probes for Real-Time Quantitative RT-PCR

  • Chapter
Rapid Cycle Real-Time PCR

Abstract

In many ways, chronic myelogenous leukemia (CML) serves as a paradigm for the utility of molecular methods to diagnose malignancy or to monitor patient response to therapy [1]. CML constitutes a clinical model for molecular detection and therapy surveillance since this entity was the first leukemia known to be associated with a specific chromosomal rearrangement, the Philadelphia (Ph) translocation t(9;22)(q34;q11), and the presence of two chimeric genes, BCR-ABL on chromosome 22 and ABL-BCR on chromosome 9. BCR-ABL is transcribed to a specific BCR-ABL mRNA and encodes in most patients a 210-kDa chimeric protein with increased tyrosine kinase activity. The central role of BCR-ABL in several pathways which lead to uncontrolled proliferation has been shown in vitro and in vivo. Several approaches have been introduced that can specifically detect the Ph translocation or its products, such as fluorescent in situ hybridization, Southern blotting, western blotting, and reverse transcriptase polymerase chain reaction (RT-PCR) [2–4]. Of these, RT-PCR for BCR-ABL mRNA is by far the most sensitive and consequently has received the most attention in the context of minimal residual disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med 340: 1330–1340

    Article  PubMed  CAS  Google Scholar 

  2. Cross NCP (1997) Assessing residual leukaemia. Baillieres Clin Haematol 10: 389–403

    Article  PubMed  CAS  Google Scholar 

  3. Lion T (1996) Monitoring of residual disease in chronic myelogenous leukemia: methodological approaches and clinical aspects. Leukemia 10: 896–906

    PubMed  CAS  Google Scholar 

  4. Morley A (1998) Quantifying leukemia. N Engl J Med 339: 627–629

    Article  PubMed  CAS  Google Scholar 

  5. Mensink E, van de Locht A, Schattenberg A, Linders E, Schaap N, Guerts van Kessel A, de Witte T (1998) Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukaemia patients using real-time quantitative RT-PCR. Br J Haematol 102: 768–774

    CAS  Google Scholar 

  6. Preudhomme C, Révillion F, Merlat A, Hornez L, Roumier C, Duflos-Grardel N, Jouet JP, Cos-son A, Peyrat JP, Fenaux P (1999) Detection of BCR-ABL transcripts in chronic myeloid leukemia ( CML) using a `real-time’ quantitative RT-PCR assay. Leukemia 13: 957–964

    Google Scholar 

  7. Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22: 130–138

    PubMed  CAS  Google Scholar 

  8. Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis UJ (1997) The LightCycler: A microvolume multisample fluorimeter with rapid temperature control. Biotechniques 22: 176–181

    Google Scholar 

  9. Emig M, Saußele S, Wittor H, Weißer A, Reiter A, Willer A, Berger U, Hehlmann R, Cross NCP, Hochhaus A (1999) Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real-time quantitative RT-PCR. Leukemia 13: 1825–1832

    Article  PubMed  CAS  Google Scholar 

  10. Harnden DG, Klinger HP (eds) (1985) ISCN. An international system for human cytogenetic nomenclature. Karger, Basel

    Google Scholar 

  11. Kantarjian HM, Smith TL, O’Brien S, Beran M, Pierce S, Talpaz M, and the Leukemia Service (1995) Prolonged survival in chronic myelogenous leukemia after cytogenetic response to interferon-a therapy. Ann Intern Med 122: 254–261

    PubMed  CAS  Google Scholar 

  12. Grossman A, Silver RT, Szatrowski TP, Gutfriend A, Verma RS, Benn PA (1991) Densitometric analysis of Southern blot autoradiographs and its application to monitoring patients with chronic myeloid leukemia. Leukemia 5: 540–547

    PubMed  CAS  Google Scholar 

  13. Reiter A, Skladny H, Hochhaus A, Seifarth W, Heimpel H, Bartram CR, Cross NCP, Hehlmann R (1997) Molecular response of CML patients treated with interferon-a monitored by quantitative Southern blot analysis. Br J Haematol 97: 86–93

    Article  PubMed  CAS  Google Scholar 

  14. Cross NCP, Feng L, Bungey J, Goldman JM (1993) Minimal residual disease after bone marrow transplant for chronic myeloid leukaemia detected by the polymerase chain reaction. Leuk Lymphoma 11 [Suppl 1]: 39–43

    Article  PubMed  Google Scholar 

  15. Cross NCP, Melo JV, Feng L, Goldman JM (1994) An optimized multiplex polymerase chain reaction ( PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders. Leukemia 8: 186–189

    Google Scholar 

  16. van Rhee F, Marks DI, Lin F, Szydlo RM, Hochhaus A, Treleaven J, Delord C, Cross NCP, Goldman JM (1995) Quantification of residual disease in Philadelphia-positive acute lymphoblastic leukemia: comparison of blood and bone marrow. Leukemia 9: 329–335

    PubMed  Google Scholar 

  17. Cross NCP, Feng L, Chase A, Bungey J, Hughes TP, Goldman JM (1993) Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 82: 1929–1936

    Google Scholar 

  18. Hochhaus A, Lin F, Reiter A, Skladny H, Mason PJ, van Rhee F, Shepherd PCA, Allan NC, Hehlmann R, Goldman JM, Cross NCP (1996) Quantification of residual disease in chronic myelogenous leukemia patients on interferon-a therapy by competitive polymerase chain reaction. Blood 87: 1549–1555

    PubMed  CAS  Google Scholar 

  19. Chissoe SL, Bodenteich A, Wang YF, Wang YP, Burian D, Clifton SW, Crabtree J, Freeman A, Iyer K, Jian L, Ma Y, McLaury HJ, Pan HQ, Sarhan OH, Toth S, Wang Z, Zhang G, Heisterkamp N, Groffen J, Roe BA (1995) Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation. Genomics 27: 67–82

    Article  PubMed  CAS  Google Scholar 

  20. Chen EY, Cheng A, Lee A, Kuang WJ, Hillier L, Green P, Schlessinger D, Ciccodicola A, D’Urso M (1991) Sequence of human glucose-6-phosphate dehydrogenase cloned in plasmids and a yeast artificial chromosome. Genomics 10: 792–800

    Article  PubMed  CAS  Google Scholar 

  21. Hochhaus A, Lin F, Reiter A, Skladny H, van Rhee F, Shepherd PCA, Allan NC, Hehlmann R, Goldman JM, Cross NCP (1995) Variable numbers of BCR-ABL transcripts persist in CML patients who achieve complete cytogenetic remission with interferon-a. Br J Haematol 91: 126–131

    Article  PubMed  CAS  Google Scholar 

  22. Hochhaus A, Reiter A, Saußele S, Reichert A, Emig M, Kaeda J, Schultheis B, Berger U, Shepherd PCA, Allan NC, Hehlmann R, Goldman JM, Cross NCP for the German CML Study Group and the UK MRC CML Study Group) (2000) Molecular heterogeneity in complete cytogenetic responders after interferon-a therapy for chronic myeloid leukemia: low levels of minimal residual disease are associated with continuing remission. Blood 95: 62–66

    PubMed  CAS  Google Scholar 

  23. Lin F, Kirkland MA, van Rhee F, Chase A, Coulthard S, Bungey J, Goldman JM, Cross NCP (1996) Molecular analysis of transient cytogenetic relapse after allogeneic bone marrow transplantation for chronic myeloid leukaemia. Bone Marrow Transplant 18: 1147–1152

    PubMed  CAS  Google Scholar 

  24. Lin F, van Rhee F, Goldman JM, Cross NCP (1996) Kinetics of increasing BCR-ABL transcript numbers in chronic myeloid leukemia patients who relapse after bone marrow transplantation. Blood 87: 4473–4478

    PubMed  CAS  Google Scholar 

  25. Gaiger A, Lion T, Kalhs P, Mitterbauer G, Henn T, Haas O, Fodinger M, Kier P, Forstinger C, Quehenberger P, Hinterberger W, Jäger U, Linkesch W, Mannhalter C, Lechner K (1993) Frequent detection of BCR-ABL specific mRNA in patients with chronic myeloid leukemia (CML) following allogeneic and syngeneic bone marrow transplantation ( BMT ). Leukemia 7: 1766–1772

    Google Scholar 

  26. Lion T, Henn T, Gaiger A, Kalhs P, Gadner H (1993) Early detection of relapse after bone marrow transplantation in patients with chronic myelogenous leukaemia. Lancet 341: 275–276

    Article  PubMed  CAS  Google Scholar 

  27. van Rhee F, Lin F, Cullis JO, Spencer A, Cross NCP, Chase A, Garicochea B, Bungey J, Barrett J, Goldman JM (1994) Relapse of chronic myeloid leukemia after allogeneic bone marrow transplant: the case for giving donor leukocyte transfusions before the onset of hematologic relapse. Blood 83: 3377–3383

    PubMed  Google Scholar 

  28. Raanani P, Dazzi F, Sohal J, Szydlo R, van Rhee F, Reiter A, Lin F, Goldman JM, Cross NCP (1997) The rate and kinetics of molecular response to donor leucocyte transfusions in chronic myeloid leukemia patients treated for relapse after allogeneic bone marrow transplantation. Br J Haematol 99: 945–950

    Article  PubMed  CAS  Google Scholar 

  29. Bohling SD, King TC, Wittwer CT, Elenitoba-Johnson KSJ (1999) Rapid simultaneous amplification and detection of the MBR/JH chromosomal translocation by fluorescence melting curve analysis. Am J Pathol 154: 97–103

    Article  PubMed  CAS  Google Scholar 

  30. Gibson UEM, Heid CA, Williams PM (1996) A novel method for real time quantitative RTPCR. Genome Res 6: 995–1001

    Article  PubMed  CAS  Google Scholar 

  31. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6: 986–994

    Article  PubMed  CAS  Google Scholar 

  32. Higuchi R, Dollinger G, Walsh PS, Griffith R (1992) Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10: 413–417

    Article  PubMed  CAS  Google Scholar 

  33. Melo JV (1996) The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 88: 2375–2384

    PubMed  CAS  Google Scholar 

  34. Hochhaus A, Reiter A, Skladny H, Melo JV, Sick C, Berger U, Guo JQ, Arlinghaus RB, Hehlmann R, Goldman JM, Cross NCP (1996) A novel BCR-ABL fusion gene (e6a2) in a patient with Philadelphia chromosome negative chronic myelogenous leukemia. Blood 88: 2236–2240

    PubMed  CAS  Google Scholar 

  35. Melo JV, Myint H, Galton DA, Goldman JM (1994) P190sCR-ASL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia 8: 208–211

    PubMed  CAS  Google Scholar 

  36. Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R, Meloni G, Saglio G, Salvatore F, Rotoli B (1996) Neutrophilic-chronic myelogenous leukemia (CML-N): a distinct disease with a specific marker (BCR-ABL with c3a2 junction). Blood 88: 2410–2414

    PubMed  CAS  Google Scholar 

  37. van der Plas DC, Soekarman D, van Gent AM, Grosveld G, Hagemeijer A (1991) bcr-abl mRNA lacking abl exon a2 detected by polymerase chain reaction in a chronic myelogeneous leukemia patient. Leukemia 5: 457–461

    Google Scholar 

  38. Paldi Haris P, Barta A, Lengyel L, Batai A, Masszi T, Remenyi P, Denes R, Paloczi K, Kelemen E, Foldi J (1994) Molecular background of a new case of chronic myelogenous leukemia with bcr-abl chimera mRNA lacking the A2 exon [letter]. Leukemia 8: 1791

    Google Scholar 

  39. Iwata S, Mizutani S, Nakazawa S, Yata J (1994) Heterogeneity of the breakpoint in the ABL gene in cases with BCR/ABL transcript lacking ABL exon a2. Leukemia 8: 1696–1702

    PubMed  CAS  Google Scholar 

  40. Lion T (1996) Control genes in reverse transcriptase-polymerase chain reaction assays. Leukemia 10: 1527–1528

    PubMed  CAS  Google Scholar 

  41. Soutar RL, Dillon J, Ralston SH (1997) Control genes for reverse-transcription-polymerase chain reaction: A comparison of beta actin and glyceraldehyde phosphate dehydrogenase. Br J Haematol 97: 247–248

    Google Scholar 

  42. Cross NCP, Lin F, Goldman JM (1994) Appropriate controls for reverse transcription polymerase chain reaction ( RT-PCR ). Br J Haematol 87: 218

    Google Scholar 

  43. Taylor JJ, Haesman PA (1994) Control genes for reverse transcriptase/polymerase chain reaction ( RT-PCR ). Br J Haematol 86: 444–447

    Google Scholar 

  44. Hook EB (1977) Exclusion of chromosomal mosaicism: tables of 90%, 95%, and 99% confidence limits and comments on use. Am J Hum Genet 29: 94–97

    PubMed  CAS  Google Scholar 

  45. Lin F, Goldman JM, Cross NCP (1994) A comparison of the sensitivity of blood and bone marrow for the detection of minimal residual disease in chronic myeloid leukaemia. Br J Haematol 86: 683–685

    Article  PubMed  CAS  Google Scholar 

  46. Hochhaus A, Weisser A, La Rosée P, Emig M, Müller MC, Reiter A, Kuhn C, Berger U, Hehlmann R, Cross NCP (2000) Detectron and quantification of residual disease in chronic myelogenous leukemia. Leukemia 14: 998–1005

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hochhaus, A. et al. (2001). Monitoring of Residual Disease in Patients with Chronic Myelogenous Leukemia Using Specific Fluorescent Hybridization Probes for Real-Time Quantitative RT-PCR. In: Meuer, S., Wittwer, C., Nakagawara, KI. (eds) Rapid Cycle Real-Time PCR. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59524-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59524-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66736-0

  • Online ISBN: 978-3-642-59524-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics