Genotyping of Angiotensin-Converting Enzyme and Angiotensinogen Polymorphisms with the LightCycler System

  • Eiichi Sakai
  • Minori Tajima
  • Mitsuko Mori
  • Reiko Inage
  • Manabu Fukumoto
  • Kan-Ichi Nakagawara


The renin-angiotensin system regulates blood pressure, and maintains electrolyte homeostasis in humans [1]. In this system, angiotensinogen (AGT) is catalyzed by renin to form angiotensin I, which is then cleaved by angiotensin-converting enzyme (ACE) to yield angiotensin II, a potent vasopressor and effector on renal function [1]. Recently, several studies have focused on the correlation between physiological disorders and the genetic variation of peptides in the reninangiotensin system. A specific mutation in the angiotensinogen gene was reported to be associated with essential hypertension [2,3]. Individuals with homozygous deletion alleles of ACE were reported to have a higher level of serum ACE and an increased risk of ischemic heart disease, sudden death, left ventricular hypertrophy, increased blood glucose levels, diabetic nephropathy, and premature death [4–7]. Detection of mutations in genes that constitute the renin-angiotensin system may be important in the prevention and control of disorders in the cardiovascular system, glucose metabolism, and urinary function.


Deletion Allele Angiotensinogen Gene Increase Blood Glucose Level LightCycler System Reninangiotensin System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hardman JG, Limbird LE, Molinof PB, Ruddon RW, Gilman AG (1996) Renin and angiotensin. In: The pharmacological basis of therapeutics, (9th edn. McGraw-Hill, New York, pp 733–758Google Scholar
  2. 2.
    Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM, Corvol P (1992) Molecular basis of human hypertension: role of angiotensinogen. Cell 71: 169–180PubMedCrossRefGoogle Scholar
  3. 3.
    Caulfield M, Lavender P, Farrall M, Munroe P, Lawson M, Turner P, Clark AJ (1994) Linkage of the angiotensinogen gene to essential hypertension. N Engl J Med 330: 1629–1633PubMedCrossRefGoogle Scholar
  4. 4.
    Cambien F, Poirier O, Lecerf L, Evans A, Cambou JP, Arveiler D, Luc G, Bird JM, Bara L, Ricard S, Tiret L, Amouyel P, Alhenc-Gelas F, Soubrier F (1992) Deletion polymorphysm in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 359: 641–644PubMedCrossRefGoogle Scholar
  5. 5.
    Morris BJ, Zee RY, Schrader AP (1994) Different frequencies of angiotensin-converting enzyme genotypes in older hypertensive individuals. J Clin Invest 94: 1085–1089PubMedCrossRefGoogle Scholar
  6. 6.
    Iwai N, Ohmichi N, Nakamura Y, Kinoshita M (1994) DD genotype of the angiotensin-converting enzyme gene is a risk factor for left ventricular hypertrophy. Circulation 90: 2622–2628PubMedGoogle Scholar
  7. 7.
    Schunkert H, Hense HW, Holmer SR, Stender M, Perz S, Keil U, Lorell BH, Riegger GA (1994) Association between a deletion polymorphism of the angiotensin-converting enzyme gene and left ventricular hypertrophy. N Engl J Med 330: 1634–1638PubMedCrossRefGoogle Scholar
  8. Ohno T, Kawazu S, Tomono S (1996) Association analysis of the polymorphisms of angiotensin-converting enzyme and angiotensinogen genes with diabetic nephtopathy in Japanese non-insulin-dependent diabetics. Metabolism 45: 218–222CrossRefGoogle Scholar
  9. 9.
    Sambrook J, Fritsch EF, Maniatis T (1989) Appendix E: Commonly used techniques in molecular cloning. In: Molecular cloning: a laboratory manual 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  10. 10.
    Gaillard I, Clauser E, Corvol P (1989) Structure of human angiotensinogen gene. DNA 8: 87–99PubMedCrossRefGoogle Scholar
  11. 11.
    Caplin BE, Rasmussen RP, Bernard PS, Wittwer CT (1999) Light CyclerTM Hybridization probes. Biochemica 1: 5–8Google Scholar
  12. 12.
    Wetmur JG (1995) Formation and structure of nucleic acid hybrids. In: Molecular biology and biotechnology: a comprehensive desk reference. Wiley-VCH, New York, pp 605–608Google Scholar
  13. 13.
    Blake RD (1995) Denaturation of DNA. In: Molecular biology and biotechnology: a comprehensive desk reference. Wiley-VCH, New York, pp 207–210Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Eiichi Sakai
  • Minori Tajima
  • Mitsuko Mori
  • Reiko Inage
  • Manabu Fukumoto
  • Kan-Ichi Nakagawara
    • 1
  1. 1.Miyagino-ku, SendaiJapan

Personalised recommendations