Molecular Genetics and Molecular Biology of Alzheimer’s Disease

  • R. Sandbrink
  • K. Beyreuther


Basic research on the molecular biology of Alzheimer’s disease began with the study of the characteristic histopathological features of the disease, which revealed that β-amyloid (Aβ), amyloid precursor protein (APP), and tau protein all participate in the disease process at the molecular level. The molecular genetic characterization of the various genetic etiologies of the disease then led not only to confirmation that Aβ is important in pathogenesis, but also to the identification of further genes and gene products involved in the production of Alzheimer’s disease — the presenilins and apolipoprotein E, whose ε4 allele is a risk factor for the disease.


Alzheimer Disease Amyloid Precursor Protein Amyloid Precursor Protein Gene Amyloid Precursor Protein Expression Hereditary Cerebral Hemorrhage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allg Z Psychiatr Psych Gerichtl Med 64: 146–148Google Scholar
  2. Auld DS, Kar S, Quirion R (1998) Beta-amyloid peptides as direct cholinergic neuromodulators: a missing link? Trends Neurosci 21: 43–49PubMedCrossRefGoogle Scholar
  3. Bales KR, Verina T, Dodel RC et al (1997) Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 17: 263–264PubMedCrossRefGoogle Scholar
  4. Banati RB, Gehrmann J, Czech C et al (1993) Early and rapid de novo synthesis of Alzheimer beta A4-amyloid precursor protein (APP) in activated microglia. Glia 9: 199–210PubMedCrossRefGoogle Scholar
  5. Banati RB, Gehrmann J, Wiessner C, Hossmann KA, Kreutzberg GW (1995) Glial expression of the beta-amyloid precursor protein (APP) in global ischemia. J Cereb Blood Flow Metab 15: 647–654PubMedCrossRefGoogle Scholar
  6. Barger SW, Mattson MP (1996) Induction of neuroprotective kappa B-dependent transcription by secreted forms of the Alzheimer’s beta-amyloid precursor. Mol Brain Res 40: 116–126PubMedCrossRefGoogle Scholar
  7. Baumeister R, Leimer U, Zweckbronner J, Jakubek C, Grünberg J, Haass C (1997) The sel-12 mutant phenotype of C. elegans is rescued independent of proteolytic processing by wt but not mutant presenilin. Genes Function 1: 149–159PubMedCrossRefGoogle Scholar
  8. Behl C (1997) Amyloid beta-protein toxicity and oxidative stress in Alzheimer’s disease. Cell Tissue Res 290: 471–480PubMedCrossRefGoogle Scholar
  9. Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77: 817–827PubMedCrossRefGoogle Scholar
  10. Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323: 577–591PubMedGoogle Scholar
  11. Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101: 1371–1378PubMedCrossRefGoogle Scholar
  12. Blacker D, Haines JL, Rodes L et al (1997) ApoE-4 and age at onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology 48: 139–147PubMedCrossRefGoogle Scholar
  13. Blanchard BJ, Konopka G, Russell M, Ingram VM (1997) Mechanism and prevention of neurotoxicity caused by beta-amyloid peptides: relation to Alzheimer’s disease. Brain Res 776: 40–50PubMedCrossRefGoogle Scholar
  14. Borchelt DR, Thinakaran G, Eckman CB et al (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate A beta 1–42/1–40 ratio in vitro and in vivo. Neuron 17: 1005–1013PubMedCrossRefGoogle Scholar
  15. Borchelt DR, Ratovitski T, Vanlare J et al (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19: 939–945PubMedCrossRefGoogle Scholar
  16. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16: 271–278PubMedCrossRefGoogle Scholar
  17. Breitner JCS (1996) The role of anti-inflammatory drugs in the prevention and treatment of Alzheimer’s disease. Annu Rev Med 47: 401–411PubMedCrossRefGoogle Scholar
  18. Bullido MJ, Artiga MJ, Recuero M et al (1998) A polymorphism in the regulatory region of APOE associated with risk for Alzheimer’s dementia. Nat Genet 18: 69–71PubMedCrossRefGoogle Scholar
  19. Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14: 879–888PubMedCrossRefGoogle Scholar
  20. Bush AI, Multhaup G, Moir RD et al (1993) A novel zinc(II) binding site modulates the function of the beta A4 amyloid protein precursor of Alzheimer’s disease. J Biol Chem 268: 16109–16112PubMedGoogle Scholar
  21. Buxbaum JD, Gandy SE, Cicchetti P et al (1990) Processing of Alzheimer beta/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation. Proc Natl Acad Sci USA 87: 6003–6006PubMedCrossRefGoogle Scholar
  22. Buxbaum JD, Ruefli AA, Parker CA, Cypess AM, Greengard P (1994) Calcium regulates processing of the Alzheimer amyloid protein precursor in a protein kinase C-independent manner. Proc Natl Acad Sci USA 91: 4489–4493PubMedCrossRefGoogle Scholar
  23. Cai XD, Golde TE, Younkin SG (1993) Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259: 514–516PubMedCrossRefGoogle Scholar
  24. Campion D, Martin C, Heilig R et al (1995) The NACP/synuclein gene: chromosomal assignment and screening for alterations in Alzheimer disease. Genomics 26: 254–257PubMedCrossRefGoogle Scholar
  25. Capell A, Saffrich R, Olivo JC et al (1997) Cellular expression and proteolytic processing of presenilin proteins is developmentally regulated during neuronal differentiation. J Neurochem 69: 2432–2440PubMedCrossRefGoogle Scholar
  26. Capell A, Grunberg J, Pesold B et al (1998) The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100–150-kDa molecular mass complex. J Biol Chem 273: 3205–3211PubMedCrossRefGoogle Scholar
  27. Caporaso GL, Gandy SE, Buxbaum JD, Ramabhadran TV, Greengard P (1992) Protein phosphorylation regulates secretion of Alzheimer beta/A4 amyloid precursor protein. Proc Natl Acad Sci USA 89: 3055–3059PubMedCrossRefGoogle Scholar
  28. Castano EM, Prelli F, Wisniewski T, Golabek A, Kumar RA, Soto C, Frangione B (1995) Fibrillogenesis in Alzheimer’s disease of amyloid beta peptides and apolipoprotein E. Biochem J 306: 599–604Google Scholar
  29. Chartier Harlin MC, Crawford F, Houlden H et al (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353: 844–846CrossRefGoogle Scholar
  30. Citron M, Oltersdorf T, Haass C et al (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 360: 672–674PubMedCrossRefGoogle Scholar
  31. Citron M, Westaway D, Xia W et al (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 3: 67–72PubMedCrossRefGoogle Scholar
  32. Clark RF, Hutton M, Fuldner RA et al (1995) The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nat Genet 11: 219–222CrossRefGoogle Scholar
  33. Conlon RA, Reaume AG, Rossant J (1995) Notch1 is required for the coordinate segmentation of somites. Development 121: 1533–1545PubMedGoogle Scholar
  34. Cook DG, Sung JC, Golde TE et al (1996) Expression and analysis of presenilin 1 in a human neuronal system: localization in cell bodies and dendrites. Proc Natl Acad Sci USA 93: 9223–9228PubMedCrossRefGoogle Scholar
  35. Cook DG, Forman MS, Sung JC et al (1997) Alzheimer’s A beta (1–42) is generated in the endoplasmic reticulum/intermediate compartment of NT2 N cells. Nature Med 3: 1021–1023CrossRefGoogle Scholar
  36. Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261: 921–923PubMedCrossRefGoogle Scholar
  37. Cruts M, van Duijn CM, Backhovens H et al (1998) Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population based study of presenile Alzheimer disease. Hum Mol Genet 7: 43–51PubMedCrossRefGoogle Scholar
  38. Davis RE, Miller S, Herrnstadt C et al (1997) Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proc Natl Acad Sci USA 94: 4526–4531PubMedCrossRefGoogle Scholar
  39. De Strooper B, Saftig P, Craessaerts K et al (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391: 387–390PubMedCrossRefGoogle Scholar
  40. Doan A, Thinakaran G, Borchelt DR et al (1996) Protein topology of presenilin 1. Neuron 17: 1023–1030PubMedCrossRefGoogle Scholar
  41. Drewes G, Lichtenberg Kraag B et al (1992) Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J 11: 2131–2138PubMedGoogle Scholar
  42. Drewes G, Trinczek B, Illenberger S et al (1995) Microtubule-associated protein microtubule affinity-regulating kinase (p110(mark)) — a novel protein kinase that regulates taumicrotubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J Biol Chem 270: 7679–7688PubMedCrossRefGoogle Scholar
  43. Duff K, Eckman C, Zehr C et al (1996) Increased amyloid-beta 42(43) in brains of mice expressing mutant presenilin 1. Nature 383: 710–713PubMedCrossRefGoogle Scholar
  44. Dyrks T, Weidemann A, Multhaup G et al (1988) Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer’s disease. EMBO J 7: 949–957PubMedGoogle Scholar
  45. Dyrks T, Dyrks E, Hartmann T, Masters C, Beyreuther K (1992) Amyloidogenicity of βA4 and βA4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J Biol Chem 267: 18210–18217PubMedGoogle Scholar
  46. Eckman CB, Mehta ND, Crook R et al (1997) A new pathogenic mutation in the APP gene (1716 V) increases the relative proportion of A beta 42(43). Hum Mol Genet 6: 2087–2089PubMedCrossRefGoogle Scholar
  47. Efthimiopoulos S, Felsenstein KM, Sambamurti K, Robakis NK, Refolo LM (1994) Study of the phorbol ester effect on Alzheimer amyloid precursor processing: sequence requirements and involvement of a cholera toxin sensitive protein. J Neurosci Res 38: 81–90PubMedCrossRefGoogle Scholar
  48. Efthimiopoulos S, Punj S, Manolopoulos V, Pangalos M, Wang GP, Refolo LM, Robakis NK (1996) Intracellular cyclic AMP inhibits constitutive and phorbol ester-stimulated secretory cleavage of amyloid precursor protein. J Neurochem 67: 872–875PubMedCrossRefGoogle Scholar
  49. Elkhoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD (1996) Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 382: 716–719CrossRefGoogle Scholar
  50. Esch FS, Keim PS, Beattie EC et al (1990) Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248: 1122–1124PubMedCrossRefGoogle Scholar
  51. Etcheberrigaray R, Ito E, Kim CS, Alkon DL (1994) Soluble beta-amyloid induction of Alzheimer’s phenotype for human fibroblast K+ channels. Science 264: 276–279PubMedCrossRefGoogle Scholar
  52. Evans KC, Berger EP, Cho CG, Weisgraber KH, Lansbury PT Jr (1995) Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci USA 92: 763–767PubMedCrossRefGoogle Scholar
  53. Evin G, Beyreuther K, Masters CL (1994) Alzheimer’s disease amyloid precursor protein (AßPP): proteolytic processing, secretases and βA4 amyloid production. Int J Exp Clin Invest 1: 263–280Google Scholar
  54. Farrer LA, Cupples LA, Haines JL et al (1997) Effects of age, sex, ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. JAMA 278: 1349–1356PubMedCrossRefGoogle Scholar
  55. Feany MB, Dickson DW (1996) Neurodegenerative disorders with extensive tau pathology: a comparative study and review. Ann Neurol 40: 139–148PubMedCrossRefGoogle Scholar
  56. Frautschy SA, Yang FS, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152: 307–317PubMedGoogle Scholar
  57. Gabuzda D, Busciglio J, Chen LB, Matsudaira P, Yankner BA (1994) Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J Biol Chem 269: 13623–13628PubMedGoogle Scholar
  58. Games D, Adams D, Alessandrini R et al (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373: 523–527PubMedCrossRefGoogle Scholar
  59. Goate A, Chartier Harlin MC, Mullan M et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349: 704–706PubMedCrossRefGoogle Scholar
  60. Goedert M (1995) Molecular dissection of the neurofibrillary lesions of Alzheimer’s disease. Arzneimittelforschung 45(1): 403–409PubMedGoogle Scholar
  61. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8: 393–399PubMedGoogle Scholar
  62. Goedert M, Cohen ES, Jakes R, Cohen P (1992) p42 MAP kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1. Implications for Alzheimer’s disease. FEBS Lett 312: 95–99PubMedCrossRefGoogle Scholar
  63. Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383: 550–553PubMedCrossRefGoogle Scholar
  64. Gong CX, Grundke Iqbal I, Damuni Z, Iqbal K (1994a) Dephosphorylation of microtubule-associated protein tau by protein phosphatase-1 and -2C and its implication in Alzheimer disease. FEBS Lett 341: 94–98PubMedCrossRefGoogle Scholar
  65. Gong CX, Grundke Iqbal I, Iqbal K (1994b) Dephosphorylation of Alzheimer’s disease abnormally phosphorylated tau by protein phosphatase-2A. Neuroscience 61: 765–772PubMedCrossRefGoogle Scholar
  66. Goodman Y, Mattson MP (1994) Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol 128: 1–12PubMedCrossRefGoogle Scholar
  67. Goto S, Yamamoto H, Fukunaga K, Iwasa T, Matsukado Y, Miyamoto E (1985) Dephosphorylation of microtubule-associated protein 2, tau factor, and tubulin by calcineurin. J Neurochem 45: 276–283PubMedCrossRefGoogle Scholar
  68. Greenwood JA, Scott CW, Spreen RC, Caputo CB, Johnson GV (1994) Casein kinase II preferentially phosphorylates human tau isoforms containing an amino-terminal insert. Identification of threonine 39 as the primary phosphate acceptor. J Biol Chem 269: 4373–4380PubMedGoogle Scholar
  69. Grilli M, Ribola M, Alberici A, Valerio A, Memo M, Spano PF (1995) Identification and characterization of a kappa B/Rel binding site in the regulatory region of the amyloid precursor protein gene. J Biol Chem 270: 26774–26777PubMedCrossRefGoogle Scholar
  70. Grunberg J, Walter J, Loetscher H, Deuschle U, Jacobsen H, Haass C (1998) Alzheimer’s disease associated presenilin-1 non-protein and its 18–20kDa C-terminal fragment are death substrates for proteases of the caspase family. Biochemistry 37: 2263–2270PubMedCrossRefGoogle Scholar
  71. Grundke Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986a) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261: 6084–6089Google Scholar
  72. Grundke Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986b) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83: 4913–4917CrossRefGoogle Scholar
  73. Guo Q, Furukawa K, Sopher BL et al (1996) Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. Neuroreport 8: 379–383PubMedCrossRefGoogle Scholar
  74. Haass C (1997) Presenilins: genes for life and death. Neuron 18: 687–690PubMedCrossRefGoogle Scholar
  75. Haass C, Selkoe DJ (1993) Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 75: 1039–1042PubMedCrossRefGoogle Scholar
  76. Haass C, Koo EH, Mellon A, Hung AY, Selkoe DJ (1992a) Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357: 500–503PubMedCrossRefGoogle Scholar
  77. Haass C, Schlossmacher MG, Hung AY et al (1992b) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359: 322–325PubMedCrossRefGoogle Scholar
  78. Haass C, Hung AY, Selkoe DJ, Teplow DB (1994) Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem 269: 17741–17748PubMedGoogle Scholar
  79. Han SH, Einstein G, Weisgraber KH et al (1994) Apolipoprotein E is localized to the cytoplasm of human cortical neurons: a light and electron microscopic study. J Neuropathol Exp Neurol 53: 535–544PubMedCrossRefGoogle Scholar
  80. Hardy J (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 20: 154–159PubMedCrossRefGoogle Scholar
  81. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12: 383–388PubMedCrossRefGoogle Scholar
  82. Haring R, Gurwitz D, Barg J et al (1995) NGF promotes amyloid precursor protein secretion via muscarinic receptor activation. Biochem Biophys Res Commun 213: 15–23PubMedCrossRefGoogle Scholar
  83. Harris ME, Hensley K, Butterfield DA, Leedle RA, Carney JM (1995) Direct evidence of oxidative injury produced by the Alzheimer’s beta-amyloid peptide (1–40) in cultured hippocampal neurons. Exp Neurol 131: 193–202PubMedCrossRefGoogle Scholar
  84. Hartmann T, Bergsdorf C, Tienari P et al (1995) Alternative splicing of APP influences polarised sorting and βA4 production. Soc Neurosci Abstr 21: 504Google Scholar
  85. Hartmann T, Bieger SC, Bruhl B et al (1997) Distinct sites of intracellular production for Alzheimer’s disease A beta 40/42 amyloid peptides. Nat Med 3: 1016–1020PubMedCrossRefGoogle Scholar
  86. Hasegawa M, Morishima Kawashima M, Takio K, Suzuki M, Titani K, Ihara Y (1992) Protein sequence and mass spectrometric analyses of tau in the Alzheimer’s disease brain. J Biol Chem 267: 17047–17054PubMedGoogle Scholar
  87. Heintz N, Zoghbi H (1997) Alpha-synuclein — a link between Parkinson and Alzheimer diseases? Nat Genet 16: 325–327PubMedCrossRefGoogle Scholar
  88. Hendriks L, van Duijn CM, Cras P et al (1992) Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene. Nat Genet 1: 218–221PubMedCrossRefGoogle Scholar
  89. Hirano M, Shtilbans A, Mayeux R, Davidson MM, Dimauro S, Knowles JA, Schon EA (1997) Apparent mtDNA heteroplasmy in Alzheimer’s disease patients and in normals due to PCR amplification of nucleus-embedded mtDNA pseudogenes. Proc Natl Acad Sci USA 94: 14894–14899PubMedCrossRefGoogle Scholar
  90. Hofman A, Ott A, Breteler MM et al (1997) Atherosclerosis, apolipoprotein E, prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet 349: 151–154PubMedCrossRefGoogle Scholar
  91. Holcomb L, Gordon MN, McGowan E et al (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4: 97–100PubMedCrossRefGoogle Scholar
  92. Holtzman DM, Pitas RE, Kilbridge J, Nathan B, Mahley RW, Bu GJ, Schwartz AL (1995) Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proc Natl Acad Sci USA 92: 9480–9484PubMedCrossRefGoogle Scholar
  93. Houlden H, Crook R, Backhovens H et al (1998) ApoE genotype is a risk factor in nonpresenilin early-onset Alzheimer’s disease families. Am J Med Genet 81: 117–121PubMedCrossRefGoogle Scholar
  94. Hoyer S (1998) Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 105: 415–422PubMedCrossRefGoogle Scholar
  95. Hrabe de Angelis M, McIntyre JN, Gossler A (1997) Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386: 717–721CrossRefGoogle Scholar
  96. Hsiao KK, Borchelt DR, Olson K et al (1995) Age related CNS disorder and early death in transgenic FVB/ N mice overex-pressing Alzheimer amyloid precursor proteins. Neuron 15: 1203–1218PubMedCrossRefGoogle Scholar
  97. Hsiao K, Chapman P, Nilsen S et al (1996) Correlative memory deficits, A beta elevation, amyloid plaques in transgenic mice. Science 274: 99–102PubMedCrossRefGoogle Scholar
  98. Hung AY, Selkoe DJ (1994) Selective ectodomain phosphorylation and regulated cleavage of beta-amyloid precursor protein. EMBO J 13: 534–542PubMedGoogle Scholar
  99. Hung AY, Haass C, Nitsch RM et al (1993) Activation of protein kinase C inhibits cellular production of the amyloid beta-protein. J Biol Chem 268: 22959–22962PubMedGoogle Scholar
  100. Hutton M, Hardy J (1997) The presenilins and Alzheimer’s disease. Hum Mol Genet 6: 1639–1646PubMedCrossRefGoogle Scholar
  101. Hutton M, Busfield F, Wragg M et al (1996) Complete analysis of the presenilin 1 gene in early onset Alzheimer’s disease. Neuroreport 7: 801–805PubMedCrossRefGoogle Scholar
  102. Hutton M, Lendon CL, Rizzu P et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393: 702–705PubMedCrossRefGoogle Scholar
  103. Ida N, Hartmann T, Pantel J et al (1996) Analysis of heterogeneous beta A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J Biol Chem 271: 22908–22914PubMedCrossRefGoogle Scholar
  104. Ikezu T, Okamoto T, Komatsuzaki K, Matsui T, Martyn JAJ, Nishimoto I (1996) Negative transactivation of cAMP response element by familial Alzheimer’s mutants of APP. EMBO J 15: 2468–2475PubMedGoogle Scholar
  105. Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT (1997) APP(Sw) transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 56: 965–973PubMedCrossRefGoogle Scholar
  106. Iversen LL, Mortishiresmith RJ, Pollack SJ, Shearman MS (1995) The toxicity in vitro of beta-amyloid protein. Biochem J 311: 1–16PubMedGoogle Scholar
  107. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43). Neuron 13: 45–53PubMedCrossRefGoogle Scholar
  108. Iwatsubo T, Mann DMA, Odaka A, Suzuki N, Ihara Y (1995) Amyloid β protein (Aβ) deposition: Aβ42(43) precedes Aβ40 in Down syndrome. Ann Neurol 37: 294–299PubMedCrossRefGoogle Scholar
  109. Jacobsen JS, Spruyt MA, Brown et al (1994) The release of Alzheimer’s disease beta amyloid peptide is reduced by phorbol treatment. J Biol Chem 269: 8376–8382PubMedGoogle Scholar
  110. Jameson L, Frey T, Zeeberg B, Dalldorf F, Caplow M (1980) Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry 19: 2472–2479PubMedCrossRefGoogle Scholar
  111. Jensen PH, Hojrup P, Hager H et al (1997) Binding of A beta to alpha- and beta-synucleins: identification of segments in alpha-synuclein/NAC precursor that bind A beta and NAC. Biochem J 323: 539–546PubMedGoogle Scholar
  112. Jin LW, Ninomiya H, Roch JM, Schubert D, Masliah E, Otero DA, Saitoh T (1994) Peptides containing the RERMS sequence of amyloid beta/A4 protein precursor bind cell surface and promote neurite extension. J Neurosci 14: 5461–5470PubMedGoogle Scholar
  113. Kaltschmidt B, Baeuerle PA, Kaltschmidt C (1993) Potential involvement of the transcription factor NF-kappa B in neurological disorders. Mol Aspects Med 14: 171–190PubMedCrossRefGoogle Scholar
  114. Kaltschmidt B, Uherek M, Volk B, Baeuerle PA, Kaltschmidt C (1997) Transcription factor NF-kappa B is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci USA 94: 2642–2647PubMedCrossRefGoogle Scholar
  115. Kang J, Lemaire HG, Unterbeck et al (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736PubMedCrossRefGoogle Scholar
  116. Kar S, Seto D, Gaudreau P, Quirion R (1996) Beta-amyloid-related peptides inhibit potassium-evoked acetylcholine release from rat hippocampal slices. J Neurosci 16: 1034–1040PubMedGoogle Scholar
  117. Kibbey MC, Jucker M, Weeks BS, Neve RL, Van Nostrand WE, Kleinman HK (1993) Beta-amyloid precursor protein binds to the neurite-promoting IKVAV site of laminin. Proc Natl Acad Sci USA 90: 10150–10153PubMedCrossRefGoogle Scholar
  118. Kidd M (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197: 192–193PubMedCrossRefGoogle Scholar
  119. Kim TW, Tanzi RE (1997) Presenilins and Alzheimer’s disease. Curr Opin Neurobiol 7: 683–688PubMedCrossRefGoogle Scholar
  120. Kim TW, Pettingell WH, Hallmark OG, Moir RD, Wasco W, Tanzi RE (1997a) Endoproteolytic cleavage and proteasomal degradation of presenilin 2 in transfected cells. J Biol Chem 272: 11006–11010PubMedCrossRefGoogle Scholar
  121. Kim TW, Pettingell WH, Jung YK, Kovacs DM, Tanzi RE (1997b) Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science 277: 373–376PubMedCrossRefGoogle Scholar
  122. Kitaguchi N, Takahashi Y, Tokushima Y, Shiojiri S, Ito H (1988) Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature 331: 530–532PubMedCrossRefGoogle Scholar
  123. Konig G, Monning U, Czech et al (1992) Identification and differential expression of a novel alternative splice isoform of the βA4 amyloid precursor protein (APP) mRNA in leukocytes and brain microglial cells. J Biol Chem 267: 10804–10809PubMedGoogle Scholar
  124. Konsortium zur molekulargenetischen Diagnostik der Huntington-Krankheit (1996) Informationsblatt zur molekulargenetischen Diagnostik der Huntington-Krankheit. Med Genet 8: 208–209Google Scholar
  125. Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke Iqbal I (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268: 24374–24384PubMedGoogle Scholar
  126. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83: 4044–4048PubMedCrossRefGoogle Scholar
  127. Kovacs DM, Fausett HJ, Page KJ et al (1996) Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat Med 2: 224–229PubMedCrossRefGoogle Scholar
  128. Kruger R, Kuhn W, Muller T et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18: 106–108PubMedCrossRefGoogle Scholar
  129. Ladu MJ, Pederson TM, Frail DE, Reardon CA, Getz GS, Falduto MT (1995) Purification of apolipoprotein E attenuates isoform-specific binding to beta-amyloid. J Biol Chem 270: 9039–9042PubMedCrossRefGoogle Scholar
  130. Lambert JC, Pereztur J, Dupire MJ et al (1997) Distortion of allelic expression of apolipoprotein E in Alzheimer’s disease. Hum Mol Genet 6: 2151–2154PubMedCrossRefGoogle Scholar
  131. Lambert JC, Pasquier F, Cottel D, Frigard B, Amouyel P, Chartier-Harlin MC (1998) A new polymorphism in the APOE promoter associated with risk of developing Alzheimer’s disease. Hum Mol Genet 7: 533–540PubMedCrossRefGoogle Scholar
  132. Lautenschlager NT, Cupples LA, Rao VS et al (1996) Risk of dementia among relatives of Alzheimer’s disease patients in the MIRAGE study: what is in store for the oldest old? Neurology 46: 641–650PubMedCrossRefGoogle Scholar
  133. Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251: 675–678PubMedCrossRefGoogle Scholar
  134. Lee RKK, Wurtman RJ, Cox AJ, Nitsch RM (1995) Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc Natl Acad Sci USA 92: 8083–8087PubMedCrossRefGoogle Scholar
  135. Lee MK, Borchelt DR, Kim G et al (1997) Hyperaccumulation of FAD-linked presenilin 1 variants in vivo. Nat Med 3: 756–760PubMedCrossRefGoogle Scholar
  136. Lehmann DJ, Johnston C, Smith AD (1997) Synergy between the genes for butyrylcholinesterase K variant and apolipoprotein E4 in late-onset confirmed Alzheimer’s disease. Hum Mol Genet 6: 1933–1936PubMedCrossRefGoogle Scholar
  137. Levitan D, Greenwald I (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377: 351–354PubMedCrossRefGoogle Scholar
  138. Levitan D, Doyle TG, Brousseau D et al (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc Natl Acad Sci USA 93: 14940–14944PubMedCrossRefGoogle Scholar
  139. Levy E, Carman MD, Fernandez MI et al (1990) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248: 1124–1126PubMedCrossRefGoogle Scholar
  140. Levy-Lahad E, Wasco W, Poorkaj P et al (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269: 973–977PubMedCrossRefGoogle Scholar
  141. Lezoualc’h F, Behl C (1998) Transcription factor NF-kappaB: friend or foe of neurons? Mol Psychiatry 3: 15–20PubMedCrossRefGoogle Scholar
  142. Lezoualc’h F, Sagara Y, Holsboer F, Behl C (1998) High constitutive NF-kappaB activity mediates resistance to oxidative stress in neuronal cells. J Neurosci 18: 3224–3232PubMedGoogle Scholar
  143. Li XJ, Greenwald I (1996) Membrane topology of the C-elegans SEL-12 presenilin. Neuron 17: 1015–1021PubMedCrossRefGoogle Scholar
  144. Litersky JM, Johnson GV (1992) Phosphorylation by cAMP-dependent protein kinase inhibits the degradation of tau by calpain. J Biol Chem 267: 1563–1568PubMedGoogle Scholar
  145. Loetscher H, Deuschle U, Brockhaus et al (1997) Presenilins are processed by caspase-type proteases. J Biol Chem 272: 20655–20659PubMedCrossRefGoogle Scholar
  146. Lowenberg K, Waggoner R (1934) Familial organic psychosis (Alzheimer’s type). Arch Neurol Psychiatr 31: 737–754CrossRefGoogle Scholar
  147. Luo YQ, Hirashima N, Li YH, Alkon DL, Sunderland T, Etcheberrigaray R, Wolozin B (1995) Physiological levels of beta-amyloid increase tyrosine phosphorylation and cytosolic calcium. Brain Res 681: 65–74PubMedCrossRefGoogle Scholar
  148. Luo Y, Sunderland T, Wolozin B (1996) Physiologic levels of beta-amyloid activate phosphatidylinositol 3-kinase with the involvement of tyrosine phosphorylation. J Neurochem 67: 978–987PubMedCrossRefGoogle Scholar
  149. Mahdi F, Vannostrand WE, Schmaier AH (1995) Protease nexin-2/amyloid beta-protein precursor inhibits factor Xa in the prothrombinase complex. J Biol Chem 270: 23468–23474PubMedCrossRefGoogle Scholar
  150. Mandelkow EM, Drewes G, Biernat J, Gustke N, Van Lint J, Vandenheede JR, Mandelkow E (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett 314: 315–321PubMedCrossRefGoogle Scholar
  151. Maruyama K, Kametani F, Usami M, Yamao Harigaya W, Tanaka K (1991) “Secretase”, Alzheimer amyloid protein precursor secreting enzyme is not sequence-specific. Biochem Biophys Res Commun 179: 1670–1676PubMedCrossRefGoogle Scholar
  152. Matsuo ES, Shin RW, Billingsley ML, Van de Voorde A, O’Connor M, Trojanowski JQ, Lee VM (1994) Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron 13: 989–1002PubMedCrossRefGoogle Scholar
  153. Mattila KM, Forsell C, Pirttilä T et al (1998) The Glu318Gly mutation of the presenilin-1 gene does not necessarily cause Alzheimer’s disease. Neurobiol Aging 19 [Suppl 4S] (abstr no 362)Google Scholar
  154. Mattson MP (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 77: 1081–1132PubMedGoogle Scholar
  155. Mattson MP, Barger SW, Cheng B, Lieberburg I, Smith Swintosky VL, Rydel RE (1993a) Beta-amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends Neurosci 16: 409–414PubMedCrossRefGoogle Scholar
  156. Mattson MP, Cheng B, Culwell AR, Esch FS, Lieberburg I, Rydel RE (1993b) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 10: 243–254PubMedCrossRefGoogle Scholar
  157. Mattson MP, Guo Q, Furukawa K, Pedersen WA (1998) Presenilis, the endoplasmic reticulum, and neuronal apoptosis in Alzheimer’s disease. J Neurochem 70: 1–14PubMedCrossRefGoogle Scholar
  158. Mayeux R, Saunders AM, Shea S et al (1998) Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. N Engl J Med 338: 506–511PubMedCrossRefGoogle Scholar
  159. McKeith IG, Galasko D, Kosaka et al (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. Neurology 47: 1113–1124PubMedCrossRefGoogle Scholar
  160. McKhann G, Drachman D, Folstein M, Kargman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34: 939–944PubMedCrossRefGoogle Scholar
  161. Milward EA, Papadopoulos R, Fuller SJ, Moir RD, Small D, Beyreuther K, Masters CL (1992) The amyloid protein precursor of Alzheimer’s disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron 9: 129–137PubMedCrossRefGoogle Scholar
  162. Monning U, Sandbrink R, Weidemann A, Banati RB, Masters CL, Beyreuther K (1995) Extracellular matrix influences the biogenesis of amyloid precursor protein in microglial cells. J Biol Chem 270: 7104–7110PubMedCrossRefGoogle Scholar
  163. Montoya SE, Aston CE, Dekosky ST, Kamboh MI, Lazo JS, Ferrell RE (1998) Bleomycin hydrolase is associated with risk of sporadic Alzheimer’s disease. Nat Genet 18: 211–212PubMedCrossRefGoogle Scholar
  164. Morishima Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K, Iharae Y (1995) Proline-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem 270: 823–829CrossRefGoogle Scholar
  165. Motter R, Vigopelfrey C, Kholodenko D et al (1995) Reduction of beta-amyloid peptide(42), in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 38: 643–648PubMedCrossRefGoogle Scholar
  166. Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1: 345–347PubMedCrossRefGoogle Scholar
  167. Müller-Hill B, Beyreuther K (1989) Molecular biology of Alzheimer’s disease. Annu Rev Biochem 58: 287–307PubMedCrossRefGoogle Scholar
  168. Multhaup G (1994) Identification and regulation of the high affinity binding site of the Alzheimer’s disease amyloid protein precursor (APP) to glycosaminoglycans. Biochimie 76: 304–311PubMedCrossRefGoogle Scholar
  169. Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters CL, Beyreuther K (1996) The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271: 1406–1409PubMedCrossRefGoogle Scholar
  170. Murrell J, Farlow M, Ghetti B, Benson MD (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254: 97–99PubMedCrossRefGoogle Scholar
  171. Narindrasorasak S, Lowery D, Gonzalez DeWhitt P, Poorman RA, Greenberg B, Kisilevsky R (1991) High affinity interactions between the Alzheimer’s beta-amyloid precursor proteins and the basement membrane form of heparan sulfate proteoglycan. J Biol Chem 266: 12878–12883PubMedGoogle Scholar
  172. Nathan BP, Bellosta S, Sanan DA, Weisgraber KH, Mahley RW, Pitas RE (1994) Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 264: 850–852PubMedCrossRefGoogle Scholar
  173. Nathan BP, Chang KC, Bellosta S, Brisch E, Ge NF, Mahley RW, Pitas RE (1995) The inhibitory effect of apolipoprotein E4 on neurite outgrowth is associated with microtubule depolymerization. J Biol Chem 270: 19791–19799PubMedCrossRefGoogle Scholar
  174. NIA/AA (1996) Apolipoprotein E genotyping in Alzheimer’s disease. National Institute on Aging/Alzheimer’s Association Working Group. Lancet 347: 1091–1095Google Scholar
  175. Nishimoto I, Okamoto T, Matsuura Y, Takahashi S, Okamoto T, Murayama Y, Ogata E (1993) Alzheimer amyloid protein precursor complexes with brain GTP-binding protein G(o). Nature 362: 75–79PubMedCrossRefGoogle Scholar
  176. Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258: 304–307PubMedCrossRefGoogle Scholar
  177. Nitsch RM, Farber SA, Growdon JH, Wurtman RJ (1993) Release of amyloid beta-protein precursor derivatives by electrical depolarization of rat hippocampal slices. Proc Natl Acad Sci USA 90: 5191–5193PubMedCrossRefGoogle Scholar
  178. O’Neill LA, Kaltschmidt C (1997) NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20: 252–258PubMedCrossRefGoogle Scholar
  179. Okamoto T, Takeda S, Giambarella U et al (1996) Intrinsic signaling function of APP as a novel target of three V642 mutations linked to familial Alzheimer’s disease. EMBO J 15: 3769–3777PubMedGoogle Scholar
  180. Paliga K, Peraus G, Kreger S et al (1997) Human amyloid precursor-like protein 1 — cDNA cloning, ectopic expression in COS-7 cells and identification of soluble forms in the cerebrospinal fluid. Eur J Biochem 250: 354–363PubMedCrossRefGoogle Scholar
  181. Pangalos MN, Efthimiopoulos S, Shioi J, Robakis NK (1995a) The chondroitin sulfate attachment site of appican is formed by splicing out exon 15 of the amyloid precursor gene. J Biol Chem 270: 10388–10391PubMedCrossRefGoogle Scholar
  182. Pangalos MN, Shioi J, Robakis NK (1995b) Expression of the chondroitin sulfate proteoglycans of amyloid precursor (Appican) and amyloid precursor-like protein 2. J Neurochem 65: 762–769PubMedCrossRefGoogle Scholar
  183. Paresce DM, Ghosh RN, Maxfield FR (1996) Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron 17: 553–565PubMedCrossRefGoogle Scholar
  184. Paudel HK, Lew J, Ali Z, Wang JH (1993) Brain proline-directed protein kinase phosphorylates tau on sites that are abnormally phosphorylated in tau associated with Alzheimer’s paired helical filaments. J Biol Chem 268: 23512–23518PubMedGoogle Scholar
  185. Pedersen WA, Kloczewiak MA, Blusztajn JK (1996) Amyloid beta-protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc Natl Acad Sci USA 93: 8068–8071PubMedCrossRefGoogle Scholar
  186. Perez RG, Zheng H, Vanderploeg LHT, Koo EH (1997) The beta-amyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity. J Neurosci 17: 9407–9414PubMedGoogle Scholar
  187. Podlisny MB, Citron M, Amarante P et al (1997) Presenilin proteins undergo heterogeneous endoproteolysis between Thr291 and Ala299 and occur as sTable N- and C-terminal fragments in normal and Alzheimer brain tissue. Neurobiol Dis 3: 325–337PubMedCrossRefGoogle Scholar
  188. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047PubMedCrossRefGoogle Scholar
  189. Ponte P, Gonzalez DP, Schilling J et al (1988) A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331: 525–527PubMedCrossRefGoogle Scholar
  190. Poorkaj P, Bird TD, Wijsman E et al (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43: 815–825PubMedCrossRefGoogle Scholar
  191. Querfurth HW, Selkoe DJ (1994) Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 33: 4550–4561PubMedCrossRefGoogle Scholar
  192. Rebeck GW, Reiter JS, Strickland DK, Hyman BT (1993) Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 11: 575–580PubMedCrossRefGoogle Scholar
  193. Refolo LM, Salton SR, Anderson JP, Mehta P, Robakis NK (1989) Nerve and epidermal growth factors induce the release of the Alzheimer amyloid precursor from PC 12 cell cultures. Biochem Biophys Res Commun 164: 664–670PubMedCrossRefGoogle Scholar
  194. Rogaev EI, Sherrington R, Rogaeva EA et al (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376: 775–778PubMedCrossRefGoogle Scholar
  195. Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47: 387–400PubMedCrossRefGoogle Scholar
  196. Roses AD (1998) Alzheimer diseases: a model of gene mutations and susceptibility polymorphisms for complex psychiatric diseases. Am J Med Genet 81: 49–57PubMedCrossRefGoogle Scholar
  197. Rossor MN, Fox NC, Beck J, Campbell TC, Collinge J (1996) Incomplete penetrance of familial Alzheimer’s disease in a pedigree with a novel presenilin-1 gene mutation. Lancet 347: 1560PubMedCrossRefGoogle Scholar
  198. Rumble B, Retallack R, Hilbich C et al (1989) Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease. N Engl J Med 320: 1446–1452PubMedCrossRefGoogle Scholar
  199. Salbaum JM, Weidemann A, Lemaire HG, Masters CL, Beyreuther K (1988) The promoter of Alzheimer’s disease amyloid A4 precursor gene. EMBO J 7: 2807–2813PubMedGoogle Scholar
  200. Sandbrink R, Beyreuther K (1996) Unraveling the molecular pathway of Alzheimer’s disease: research about presenilins gathers momentum. Mol Psychiatry 1: 438–444PubMedGoogle Scholar
  201. Sandbrink R, Masters CL, Beyreuther K (1994a) βA4-amyloid protein precursor mRNA isoforms without exon 15 are ubiquitously expressed in rat tissues including brain, but not in neurons. J Biol Chem 269: 1510–1517PubMedGoogle Scholar
  202. Sandbrink R, Masters CL, Beyreuther K (1994b) Similar alternative splicing of a non-homologous domain in βA4-amyloid protein precursor-like proteins. J Biol Chem 269: 14227–14234PubMedGoogle Scholar
  203. Sandbrink R, Masters CL, Beyreuther K (1995) APP gene family: alternative splicing generates functionally related isoforms. Ann NY Acad Sci 777: 281–287CrossRefGoogle Scholar
  204. Sandbrink R, Hartmann T, Masters CL, Beyreuther K (1996a) Genes contributing to Alzheimer’s disease. Mol Psychiatr 1: 27–40Google Scholar
  205. Sandbrink R, Zhang D, Schaeffer S, Masters CL, Bauer J, Förstl H, Beyreuther K (1996b) Missense mutations of the PS-1/S182 gene in German early-onset Alzheimer’s disease patients. Ann Neurol 40: 265–266PubMedCrossRefGoogle Scholar
  206. Scheuner D, Eckman C, Jensen M et al (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Med 2: 864–870PubMedCrossRefGoogle Scholar
  207. Schmechel DE, Saunders AM, Strittmatter WJ et al (1993) Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci USA 90: 9649–9653PubMedCrossRefGoogle Scholar
  208. Schubert D, Jin LW, Saitoh T, Cole G (1989) The regulation of amyloid beta protein precursor secretion and its modulatory role in cell adhesion. Neuron 3: 689–694PubMedCrossRefGoogle Scholar
  209. Schubert W, Prior R, Weidemann A, Dircksen H, Multhaup G, Masters CL, Beyreuther K (1991) Localization of Alzheimer beta A4 amyloid precursor protein at central and peripheral synaptic sites. Brain Res 563: 184–194PubMedCrossRefGoogle Scholar
  210. Seeger M, Nordstedt C, Petanceska S et al (1997) Evidence for phosphorylation and oligomeric assembly of presenilin 1. Proc Natl Acad Sci USA 94: 5090–5094PubMedCrossRefGoogle Scholar
  211. Selkoe DJ (1994) Cell biology of the amyloid β-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 10: 373–403PubMedCrossRefGoogle Scholar
  212. Selkoe DJ (1997) Alzheimer’s disease: genotypes, phenotypes, and treatments. Science 275: 630–631PubMedCrossRefGoogle Scholar
  213. Seubert P, Vigo Pelfrey C, Esch F et al (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359: 325–327PubMedCrossRefGoogle Scholar
  214. Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89: 629–639PubMedCrossRefGoogle Scholar
  215. Sherrington R, Rogaev EI, Liang Y et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375: 754–760PubMedCrossRefGoogle Scholar
  216. Shoji M, Golde TE, Ghiso J et al (1992) Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258: 126–129PubMedCrossRefGoogle Scholar
  217. Siman R, Card JP, Nelson RB, Davis LG (1989) Expression of beta-amyloid precursor protein in reactive astrocytes following neuronal damage. Neuron 3: 275–285PubMedCrossRefGoogle Scholar
  218. Simons M, Ikonen E, Tienari PJ, Cidarregui A, Monning U, Beyreuther K, Dotti CG (1995) Intracellular routing of human amyloid protein precursor: axonal delivery followed by transport to the dendrites. J Neurosci Res 41: 121–128PubMedCrossRefGoogle Scholar
  219. Small DH, Nurcombe V, Reed G, Clarris H, Moir R, Beyreuther K, Masters CL (1994) A heparin-binding domain in the amyloid protein precursor of Alzheimer’s disease is involved in the regulation of neurite outgrowth. J Neurosci 14: 2117–2127PubMedGoogle Scholar
  220. Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, Kowall N (1996) Oxidative damage in Alzheimer’s. Nature 382: 120–121PubMedCrossRefGoogle Scholar
  221. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388: 839–840PubMedCrossRefGoogle Scholar
  222. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 95: 7737–7741PubMedCrossRefGoogle Scholar
  223. Sprecher CA, Grant FJ, Grimm G, O’Hara PJ, Norris F, Norris K, Foster DC (1993) Molecular cloning of the cDNA for a human amyloid precursor protein homolog: evidence for a multigene family. Biochemistry 32: 4481–4486PubMedCrossRefGoogle Scholar
  224. Steiner B, Mandelkow EM, Biernat J et al (1990) Phosphorylation of microtubule-associated protein tau: identification of the site for Ca2(+)-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles. EMBO J 9: 3539–3544PubMedGoogle Scholar
  225. Strittmatter WJ, Saunders AM, Schmechel D, Pericak Vance M, Enghild J, Salvesen GS, Roses AD (1993a) Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90: 1977–1981PubMedCrossRefGoogle Scholar
  226. Strittmatter WJ, Weisgraber KH, Huang DY et al (1993b) Binding of human apolipoprotein E to synthetic amyloid β peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA 90: 8098–8102PubMedCrossRefGoogle Scholar
  227. Strittmatter WJ, Saunders AM, Goedert M et al (1994a) Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc Natl Acad Sci USA 91: 11183–11186PubMedCrossRefGoogle Scholar
  228. Strittmatter WJ, Weisgraber KH, Goedert M et al (1994b) Hypothesis: microtubule instability and paired helical filament formation in the Alzheimer disease brain are related to apolipoprotein E genotype. Exp Neurol 125: 163–171CrossRefGoogle Scholar
  229. Sturchlerpierrat C, Abramowski D, Duke M et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94: 13287–13292CrossRefGoogle Scholar
  230. Suzuki N, Cheung TT, Cai XD et al (1994) An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264: 1336–1340PubMedCrossRefGoogle Scholar
  231. Tamaoka A, Sawamura N, Odaka A, Suzuki N, Mizusawa H, Shoji S, Mori H (1995) Amyloid beta protein 1–42/43 (A beta 1–42/43) in cerebellar diffuse plaques: enzyme-linked immunosorbent assay and immunocytochemical study. Brain Res 679: 151–156PubMedCrossRefGoogle Scholar
  232. Tanzi RE, McClatchey AI, Lamperti ED, Villa KL, Gusella JF, Neve RL (1988) Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 331: 528–530PubMedCrossRefGoogle Scholar
  233. Thinakaran G, Slunt HH, Sisodia SS (1995) Novel regulation of chondroitin sulfate glycosaminoglycan modification of amyloid precursor protein and its homologue, APLP2. J Biol Chem 270: 16522–16525PubMedCrossRefGoogle Scholar
  234. Thinakaran G, Borchelt DR, Lee MK et al (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17: 181–190PubMedCrossRefGoogle Scholar
  235. Thinakaran G, Harris CL, Ratovitski T et al (1997) Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J Biol Chem 272: 28415–28422PubMedCrossRefGoogle Scholar
  236. Thomas T, Thomas G, McLendon C, Sutton T, Mullan M (1996) Beta-amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380: 168–171PubMedCrossRefGoogle Scholar
  237. Thomas T, Sutton ET, Hellermann A, Price JM (1997) Beta-amyloid-induced coronary artery vasoactivity and endothelial damage. J Cardiovasc Pharmacol 30: 517–522PubMedCrossRefGoogle Scholar
  238. Tienari PJ, Destrooper B, Ikonen E et al (1996) The beta-amyloid domain is essential for axonal sorting of amyloid precursor protein. EMBO J 15: 5218–5229PubMedGoogle Scholar
  239. Tienari PJ, Ida N, Ikonen E et al (1997) Intracellular and secreted Alzheimer beta-amyloid species are generated by distinct mechanisms in cultured hippocampal neurons. Proc Natl Acad Sci USA 94: 4125–4130PubMedCrossRefGoogle Scholar
  240. Trojanowski JQ, Lee VM (1995) Phosphorylation of paired helical filament tau in Alzheimer’s disease neurofibrillary lesions: focusing on phosphatases. FASEB J 9: 1570–1576PubMedGoogle Scholar
  241. Tysoe C, Whittaker J, Xuereb J et al (1998) A presenilin-1 truncating mutation is present in two cases with autopsy-confirmed early-onset Alzheimer disease. Am J Hum Genet 62: 70–76PubMedCrossRefGoogle Scholar
  242. Ueda K, Fukushima H, Masliah E et al (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90: 11282–11286PubMedCrossRefGoogle Scholar
  243. Van Broeckhoven C, Haan J, Bakker E et al (1990) Amyloid β protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 248: 1120–1122PubMedCrossRefGoogle Scholar
  244. van Duijn CM, Clayton D, Chandra V et al (1991) Familial aggregation of Alzheimer’s disease and related disorders: a collaborative re-analysis of case-control studies. Int J Epidemiol 20[Suppl 1]: S13–S20PubMedCrossRefGoogle Scholar
  245. Van Gool WA, Evenhuis HM, van Duijn CM (1995) A case-control study of apolipoprotein E genotypes in Alzheimer’s disease associated with Down’s syndrome. Ann Neurol 38: 225–230PubMedCrossRefGoogle Scholar
  246. Van Nostrand WE, Farrow JS, Wagner SL, Bhasin R, Goldgaber D, Cotman CW, Cunningham DD (1991) The predominant form of the amyloid beta-protein precursor in human brain is protease nexin 2. Proc Natl Acad Sci USA 88: 10302–10306PubMedCrossRefGoogle Scholar
  247. Vandermeeren M, Mercken M, Vanmechelen E, Six J, Van de Voorde A, Martin JJ, Cras P (1993) Detection of tau proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J Neurochem 61: 1828–1834PubMedCrossRefGoogle Scholar
  248. von Koch CS, Zheng H, Chen H et al (1997) Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol Aging 18: 661–669CrossRefGoogle Scholar
  249. Wallace DC, Stugard C, Murdock D, Schurr T, Brown MD (1997) Ancient mtDNA sequences in the human nuclear genome: a potential source of errors in identifying pathogenic mutations. Proc Natl Acad Sci USA 94: 14900–14905PubMedCrossRefGoogle Scholar
  250. Walter J, Capell A, Grunberg J et al (1996) The Alzheimer’s disease-associated presenilins are differentially phosphorylated proteins located predominantly within the endoplasmic reticulum. Mol Med 2: 673–691PubMedGoogle Scholar
  251. Walter J, Grunberg J, Capell A et al (1997) Proteolytic processing of the Alzheimer disease-associated presenilin-1 generates an in vivo substrate for protein kinase C. Proc Natl Acad Sci USA 94: 5349–5354PubMedCrossRefGoogle Scholar
  252. Wasco W, Bupp K, Magendantz M, Gusella JF, Tanzi RE, Solomon F (1992) Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid beta protein precursor. Proc Natl Acad Sci USA 89: 10758–10762PubMedCrossRefGoogle Scholar
  253. Wasco W, Gurubhagavatula S, Paradis MD et al (1993) Isolation and characterization of APLP2 encoding a homologue of the Alzheimer’s associated amyloid β protein precursor. Nat Genet 5: 95–100PubMedCrossRefGoogle Scholar
  254. Watanabe A, Hasegawa M, Suzuki M et al (1993) In vivo phosphorylation sites in fetal and adult rat tau. J Biol Chem 268: 25712–25717PubMedGoogle Scholar
  255. Weidemann A, Konig G, Bunke D, Fischer P, Salbaum JM, Masters CL, Beyreuther K (1989) Identification, biogenesis, localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57: 115–126PubMedCrossRefGoogle Scholar
  256. Weidemann A, Paliga K, Durrwang U, Czech C, Evin G, Masters CL, Beyreuther K (1997) Formation of stable complexes between two Alzheimer’s disease gene products: Presenilin-2 and beta-amyloid precursor protein. Nature Med 3: 328–332PubMedCrossRefGoogle Scholar
  257. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72: 1858–1862PubMedCrossRefGoogle Scholar
  258. Weisgraber KH, Mahley RW (1996) Human apolipoprotein E: the Alzheimer’s disease connection. FASEB J 10: 1485–1494PubMedGoogle Scholar
  259. Whitson JS, Selkoe DJ, Cotman CW (1989) Amyloid beta protein enhances the survival of hippocampal neurons in vitro. Science 243: 1488–1490PubMedCrossRefGoogle Scholar
  260. Wild-Bode C, Yamazaki T, Capell A, Leimer U, Steiner H, Ihara Y, Haass C (1997) Intracellular generation and accumulation of amyloid beta-peptide terminating at amino acid 42. J Biol Chem 272: 16085–16088PubMedCrossRefGoogle Scholar
  261. Wisniewski T, Dowjat WK, Buxbaum JD et al (1998) A novel Polish presenilin-1 mutation (P117L) is associated with familial Alzheimer’s disease and leads to death as early as the age of 28 years. Neuroreport 9: 217–221PubMedCrossRefGoogle Scholar
  262. Wolozin B, Iwasaki K, Vito P et al (1996) Participation of Presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274: 1710–1713PubMedCrossRefGoogle Scholar
  263. Wong PC, Zheng H, Chen H et al (1997) Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387: 288–292PubMedCrossRefGoogle Scholar
  264. Wood JG, Mirra SS, Pollock NJ, Binder LI (1986) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc Natl Acad Sci USA 83: 4040–4043PubMedCrossRefGoogle Scholar
  265. Wragg M, Hutton M, Talbot C et al (1996) Genetic association between intronic polymorphism in presenilin-1 gene and late-onset Alzheimer’s disease. Lancet 347: 509–512PubMedCrossRefGoogle Scholar
  266. Xia Y, Desilva HAR, Rosi BL et al (1996) Genetic studies in Alzheimer’s disease with an NACP/alpha- synuclein polymorphism. Ann Neurol 40: 207–215PubMedCrossRefGoogle Scholar
  267. Xia WM, Zhang JM, Perez R, Koo EH, Selkoe DJ (1997) Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathogenesis of Alzheimer disease. Proc Natl Acad Sci USA 94: 8208–8213PubMedCrossRefGoogle Scholar
  268. Yamatsuji T, Matsui T, Okamoto T et al (1996) G protein-mediated neuronal DNA fragmentation induced by familial Alzheimer’s disease-associated mutants of APP. Science 272: 1349–1352PubMedCrossRefGoogle Scholar
  269. Yan SD, Chen X, Fu J et al (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382: 685–691PubMedCrossRefGoogle Scholar
  270. Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16: 921–932PubMedCrossRefGoogle Scholar
  271. Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250: 279–282PubMedCrossRefGoogle Scholar
  272. Yoshimoto M, Iwai A, Kang D, Otero DAC, Xia Y, Saitoh T (1995) NACP, the precursor protein of the non-amyloid beta/A4 protein (A beta) component of Alzheimer disease amyloid, binds A beta and stimulates A beta aggregation. Proc Natl Acad Sci USA 92: 9141–9145PubMedCrossRefGoogle Scholar
  273. Younkin SG (1995) Evidence that A beta 42 is the real culprit in Alzheimer’s disease. Ann Neurol 37: 287–288PubMedCrossRefGoogle Scholar
  274. Zheng H, Jiang MH, Trumbauer ME et al (1995) beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81: 525–531PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • R. Sandbrink
  • K. Beyreuther

There are no affiliations available

Personalised recommendations