Advertisement

Slits in a Plane

  • Hyo J. Eom

Abstract

Electromagnetic interference (EMI) problems often require an estimation of field strenght penetrating into a slit in a conducting plane. Many analytic and numerical approaches have been used to predict the effect of field leakage on electric circuit and system perfomance.

Keywords

Rectangular Cavity Conducting Plane Electrostatic Potential Distribution Residue Calculus Multiple Slit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 3

  1. 1.
    Y. S. Kim and H. J. Eom, “Fourier-transform analysis of electrostatic potential distribution through a thick slit,” IEEE Trans. Electromagn. Compat., vol. 38, no. 1, pp. 77–79, Feb. 1996.CrossRefGoogle Scholar
  2. Y. S. Kim and H. J. Eom, Corrections to “Fourier-transform analysis of electrostatic potential distribution through a thick slit,” IEEE Trans. Electromagn. Compat., vol. 39, no. 1, page 66, Feb. 1997.CrossRefGoogle Scholar
  3. 2.
    L. K. Warne and K. C. Chen, “Relation between equivalent antenna radius and transverse line dipole moments of a narrow slot aperture having depth,” IEEE Trans. Electromagn. Compat., vol. 30, no. 3, pp. 364–370, Aug. 1988.CrossRefGoogle Scholar
  4. 3.
    Y. C. Noh and H. J. Eom, “Electrostatic potential due to a potential drop across a slit,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 4, pp. 428–430, April 1998.CrossRefGoogle Scholar
  5. 4.
    S. C. Kashyap and M. A. K. Hamid, “Diffraction Characteristics of a slit in a thick conducting screen,” IEEE Trans. Antennas Propagat., vol. 19, no. 4, pp. 499–507, July 1971.CrossRefGoogle Scholar
  6. 5.
    K. Hongo and G Ishii, “Diffraction of an electromagnetic plane wave by a thick slit,” IEEE Trans. Antennas Propagat., vol. 26, no. 3, pp. 494–499, May 1978.CrossRefGoogle Scholar
  7. 6.
    D. T. Auckland and R. F. Harrington, “Electromagnetic transmission through a filled slit in a conducting plane of finite thickness, TE case,” IEEE Trans. Microwave Theory Tech., vol. 26, no. 7, pp. 499–505, July 1978.CrossRefGoogle Scholar
  8. 7.
    O. M. Mendez, M. Cadilhac, and R. Petit, “Diffraction of a two-dimensional electromagnetic beam wave by a thick slit pierced in a perfectly conducting screen,” J. Opt. Soc. Am., vol. 73, no. 3, pp. 328–331, Mar. 1983.CrossRefGoogle Scholar
  9. 8.
    J. M. Jin and J. L. Volakis, “TM scattering by an inhomogeneously filled aperture in a thick conducting plane,” IEE Proceedings, vol. 137, pt. H, no. 3, pp. 153–159, June 1990.Google Scholar
  10. 9.
    J. B. Keller, “Diffraction by an aperture,” J. Appl. Phys., vol. 28, no. 4, pp. 426 444, April 1957.Google Scholar
  11. 10.
    S. H. Kang, H. J. Eom, and T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech., vol. 41, no. 5, pp. 895–899, May 1993.CrossRefGoogle Scholar
  12. 11.
    T. J. Park, S. H. Kang, and H. J. Eom, “TE-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Antennas Propagat., vol. 42, no. 1, pp. 112–114, Jan. 1994.CrossRefGoogle Scholar
  13. 12.
    J. A. Stratton, Electromagnetic Theory, pp. 227–228, McGraw-Hill, 1941Google Scholar
  14. 13.
    Y. S. Kim, H. J. Eom, J. W. Lee, and K. Yoshitomi, “Scattering from multiple slits in a thick conducting plane,” Radio Sci., vol. 30, no. 5, pp. 1341–1347, Sept.-Oct. 1995.Google Scholar
  15. 14.
    R. Petit and G. Tayeb, “Numerical study of the symmetrical strip-gratingloaded slab,” J. Opt. Soc. Am. A., vol. 7, no. 3, pp. 373–378, March 1990.CrossRefGoogle Scholar
  16. 15.
    K. Kobayashi and K. Miura, “Diffraction of a plane wave by a thick strip grating,” IEEE Trans. Antennas Propagat., vol. 37, no. 4, pp. 459–470, Apr. 1989.MathSciNetMATHCrossRefGoogle Scholar
  17. 16.
    Ya. N. Feld, G. A. Svistunov, A. G. Kyurkchan, and A. S. Leontev, “The diffraction of an electromagnetic wave by a system of plane parallel waveguides of finite length,” Radio Eng. Electron. Phys., vol. 18, no. 5, pp. 655–663, 1973.Google Scholar
  18. 17.
    T. Otsuki, “Diffraction by multiple slits,” J. Opt. Soc. Am. A, vol. 7, no. 4, pp. 646–652, April 1990.CrossRefGoogle Scholar
  19. 18.
    K. Kobayashi, “Diffraction of a plane wave by the parallel plate grating with dielectric loading,” Trans. of Inst. of Electron. Commun. Eng. Jap., vol. J64-B, no. 10, pp. 1091–1098, Oct. 1981.Google Scholar
  20. 19.
    Y. K. Cho, “Analysis of a narrow slit in a parallel-plate transmission line: E-polarization case,” Electron. Lett., vol. 23, no. 21, pp. 1105–1106, 8th Oct. 1987.Google Scholar
  21. 20.
    H. A. Auda, “Quasistatic characteristics of a slotted parallel-plate waveguides,” IEE Proceedings, vol. 135, pt. H, no. 4, pp. 256–262, Aug. 1988.Google Scholar
  22. 21.
    J. P. Quintenz and D. G. Dudley, “Slots in a parallel-plate waveguide,” Radio Sci., vol. 11, no. 8–9, pp. 713–724, Aug.-Sept. 1976.Google Scholar
  23. 22.
    A. M. Barbosa, A. F. dos Santos, and J. Figanier, “Radiation field of a periodic strip grating excited by an aperiodic line source,” Radio Sci., vol. 19, no. 3, pp. 829–839, May-June 1984.Google Scholar
  24. 23.
    C. W. Chuang, “Generalized admittance matrix for a slotted parallel-plate waveguide,” IEEE Trans. Antennas Propagat., vol. 36, no. 9, pp. 1227–1230, Sept. 1988.MathSciNetCrossRefGoogle Scholar
  25. 24.
    E. M. T. Jones and J. K. Shimizu, “A wide-band transverse-slot flush-mounted array,” IRE Trans. Antennas Propagat., vol. 8, no. 4, pp. 401–407, July, 1960.CrossRefGoogle Scholar
  26. 25.
    J. A. Encinar, “Mode-matching and point-matching techniques applied to the analysis of metal-strip-loaded dielectric antennas,” IEEE Trans. Antennas Propagat., vol. 38, no. 9, pp. 1405–1412, Sept. 1990.CrossRefGoogle Scholar
  27. 26.
    J. H. Lee and H. J. Eom, “Scattering and radiation from finite thick slits in parallel-plate waveguide,” IEEE Trans. Antennas Propagat., vol. 44, no. 2, pp. 212–216, 1996.CrossRefGoogle Scholar
  28. 27.
    J. H. Lee, H. J. Eom, Y. K. Cho, and W. J. Chun, “TM-wave radiation from finite thick slits in parallel-plate,” IEICE Trans. Commun., vol. E79-B, no. 6, pp. 875–878, June 1996.Google Scholar
  29. 28.
    J. V. Tejedor, L. Nuno, and M. F. Bataller, “Susceptibility analysis of arbitrarily shaped 2-D slotted screen using a hybrid generalized matrix finite-element technique,” IEEE Trans. Electromagn. Compat., vol. 40, no. 1, pp. 47–54, Feb. 1998.CrossRefGoogle Scholar
  30. 29.
    H. H. Park and H. J. Eom, “Electromagnetic penetration into 2D multiple slotted rectangular cavity: TE-wave,” Electron. Lett., vol. 35, no. 1, pp. 31–32, 1999.CrossRefGoogle Scholar
  31. 30.
    H. H. Park and H. J. Eom, “Electromagnetic penetration into 2D multiple slotted rectangular cavity: TM-wave,” IEEE Trans. Antennas Propagat., vol. 48, no. 2, pp. 331–333, Feb. 2000.CrossRefGoogle Scholar
  32. 31.
    J. W. Lee and H. J. Eom, “TM scattering from slits in thick parallel conducting screens,” IEEE Trans. Antennas Propagat., vol. 46, no. 7, pp. 1117–1119, July 1998.CrossRefGoogle Scholar
  33. 32.
    L. R. Alldredge, “Diffraction of microwaves by tandem slits,” IRE Trans. Antennas Propagat., pp. 640–649, Oct. 1956.Google Scholar
  34. 33.
    Y. E. Elmoazzen and L. Shafai, “Mutual coupling between parallel-plate waveguides,” IEEE Trans. Microwave Theory Tech., vol. 21, no. 12, pp. 825–833, Dec. 1973.CrossRefGoogle Scholar
  35. 34.
    Y. Leviatan, “Electromagnetic coupling between two half-space regions separated by two slot-perforated parallel conducting screens,” IEEE Trans. Microwave Theory Tech., vol. 36, no. 1, pp. 44–51, Jan. 1978.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Hyo J. Eom
    • 1
  1. 1.Department of Electrical EngineeringKorea Advanced Institute of Science and TechnologyTeajonKorea

Personalised recommendations