Skip to main content

Osteolysis Induced by Radio-Opaque Agents

  • Conference paper
Bone Cements and Cementing Technique

Abstract

In the fibrous membrane surrounding an aseptically loose cemented implant, a heavy infiltrate of foreign body macrophages is commonly seen in response to particles of polymethylmethacrylate (PMMA) bone cement and other biomaterials. We have previously shown that monocytes and macrophages responding to bone cement particles are capable of differentiating into osteoclastic cells that resorb bone. To determine whether radio-opaque additives [barium sulphate (BaSO4) and zirconium dioxide (ZrO2)] influence this process, particles of PMMA, with or without these radio-opaque agents, were added to mouse monocytes and co-cultured with osteoblast-like cells on bone slices. Osteoclast differentiation was assessed by determining the expression of the osteoclast-associated enzyme tartrate-resistant acid phosphatase (TRAP) and lacunar bone resorption. The addition of PMMA alone to these co-cultures caused no increase in TRAP expression or bone resorption relative to control co-cultures (i.e. no added particles). However, adding PMMA particles containing BaSO4 or ZrO2 caused an increase in TRAP expression and a highly significant increase in bone resorption. Particles containing BaSO4 were associated with 50% more bone resorption than particles containing ZrO2. These results suggest that radio-opaque agents in bone cement may contribute to the pathological bone resorption of aseptic loosening by enhancing macrophage-osteoclast differentiation, and that PMMA containing BaSO4 is likely to be associated with more osteolysis than PMMA containing ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DO (1976) The granulomatous inflammatory response: a review. Am J Pathol 84: 164–191

    PubMed  CAS  Google Scholar 

  • Amstutz HC, Campbell P, Kossovsky N, Clarke IC (1992) Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop Rel Res 276: 7–18

    Google Scholar 

  • Athanasou NA, Gray A, Revell PA, Fuller K, Cochrane T, Chambers TJ (1984) Stereophotogrammetric observations on bone resorption by isolated osteoclasts. Micron and Microscopica Acta 15: 47–53

    Article  Google Scholar 

  • Betts F, Wright T, Salvati E, Boskey A (1990) Barium content of tissues from revision total hip arthroplasties. Trans Orthop Res Soc 15: 457

    Google Scholar 

  • Blum CK (1962) Radiology of some rarer dust diseases (barytosis, asbestosis and siderosis). Scot Med J 7: 478–487

    PubMed  CAS  Google Scholar 

  • Bos I, Fredebold D, Diebold J, Lohrs U (1995) Tissue reactions to cemented hip sockets. Histologic and morphometric autopsy study of 25 acetabula. Acta Orthop Scand 66 (1): 1–8

    Article  PubMed  CAS  Google Scholar 

  • Bos I, Johannisson R, Lohrs U, Lindner B, Seydel U (1990) Comparative investigations of regional lymph nodes and pseudocapsules after implantation of joint endoprostheses. Pathol Res Pract 186 (6): 707–716

    PubMed  CAS  Google Scholar 

  • Caravia L, Dowson D, Fisher J, Jobbins B (1990) The influence of bone and bone cement debris on counterface roughness in sliding wear of ultra high molecular weight polyethylene on stainless steel. Proceedings of Institute of Mechanical Engineering 204: 65–70

    Article  CAS  Google Scholar 

  • Chambers TJ, Revell PA, Fuller K, Athanasou NA (1984) Resorption of bone by isolated rabbit osteoclasts. J Cell Science, 66: 383–399

    PubMed  CAS  Google Scholar 

  • Chan KH, Ahmed AM (1991) Polymethylmethacrylate. In: BF Morrey (ed) Joint Replacement Arthroplasty. Churchill Livingstone, London, pp 23–37

    Google Scholar 

  • Chiba J, Rubash HE, Kangjung Kim, Yuichi Iwaki et al (1994) The characterisation of cytokines in the interface tissue obtained from failed cementless total hip arthroplasties with/without femoral osteolysis. Clin Orthop Rel Res 300: 304–312

    Google Scholar 

  • Forest M, Carlioz A, Vacher Lavenu MC, Postel M, Kerboull M, Tomeno B, Courpied JP (1991) Histological patterns of bone and articular tissues after orthopaedic reconstructive surgery (artificial joint implants). Path Res Prac 187: 963–977

    CAS  Google Scholar 

  • Goldring SR, Jasty M, Roelke MS, Rourke CM, Bringhurst FR, Harris WH (1986) Formation of a synovial like membrane at the bone cement interface. Arthritis Rheum 29: 836–842

    Article  PubMed  CAS  Google Scholar 

  • Goldring SR, Schiller AL, Roelke M, Rourke CM, O’Neill DA, Harris WH (1983) The synovial-like membrane at the bone cement interface in loose total hip replacements and its proposed role in bone lysis. J Bone Joint Surg [Am] 65A: 386–342

    Google Scholar 

  • Goodman SB, Chris RC, Chiou SS et al (1989) A clinical, pathological, biochemical study of the membrane surrounding loosened and non loosened total hip arthroplasties. Clin Orthop Rel Res 244: 182–187

    Google Scholar 

  • Harris WH (1994) Osteolysis and particle disease in hip replacement: a review. Acta Orthop Scand 65: 113–123

    Article  PubMed  CAS  Google Scholar 

  • Huo MH, Salvati EA, Liberman JR, Betts F, Basal M (1992) Metallic debris in femoral endo- steolysis in failed cemented total hip arthroplasties. Clin Orthop Rel Res 276: 157–168

    Google Scholar 

  • Issac GH, Atkinson JR, Dowson, D, Kennedy PD, Smith MR (1987) The causes of femoral head roughening in explanted Charnley hip prostheses. Engineering in Medicine 16: 167–173

    Article  Google Scholar 

  • Jimi E, Akiyama S, Tsurukai T, Kobayashi K, Takahashi N, Udagawa N, Shima N, Kinosaki M, Yamaguchi K, Morinaga T, Higashio K, and Suda T (1998) Osteoclast differentiation factor ( ODF) induces fusion, survival and activation of osteoclasts. J Bone Miner Res 23: S222

    Google Scholar 

  • Jiranek WA, Machado M, Jasty M et al (1993) Production of cytokines around loosened cemented acetabular components. J Bone Joint Surg [Am] 75A: 863–879

    Google Scholar 

  • Keen CE, Philip G, Brady K, Spencer JD, Levison DA (1992) Histopathological and micro-analytical study of zirconium dioxide and barium sulphate in bone cement. J Clin Pathol 45: 984–989

    Article  PubMed  CAS  Google Scholar 

  • Lacey DL, Timms E, Tan H-L, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian Y-X, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165–176

    Article  PubMed  CAS  Google Scholar 

  • Lazarus MD, Cuckler JM, Schumacher HR, Ducheyne P, Baker DG (1994) Comparison of the inflammatory response to particulate polymethylmethacrylate debris with and without barium sulfate. J Orthop Res 12 (4): 532–541

    Article  PubMed  CAS  Google Scholar 

  • Maguire JK (1987) Foreign body reaction to polymeric debris following total hip arthroplasty. Clin Orthop 216: 213–223

    PubMed  Google Scholar 

  • Minkin C (1982) Bone acid phosphatase-tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 34: 285–290

    Article  PubMed  CAS  Google Scholar 

  • Mirra JM, Amstutz HC, Matos M, Gold R (1976) The pathology of the joint tissues and its clinical relevance in prosthesis failure. Clin Orthop Rel Res 117: 221–240

    Google Scholar 

  • Murray DW, Rushton N (1990) Macrophages stimulate bone resorption when they phagocytose particles. J Bone Joint Surg [Br] 72B: 988–992

    CAS  Google Scholar 

  • Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Yano K, Morinaga T, and Higashio K (1998) RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 253: 395–400

    Article  PubMed  CAS  Google Scholar 

  • Pandey R, Quinn J, Joyner C, Murray DW, Triffitt JT, Athanasou NA (1996) Arthroplasty implant biomaterial-associated macrophages differentiate into lacunar bone-resorbing cells. Ann Rheum Dis 55 (6): 388–395

    Article  PubMed  CAS  Google Scholar 

  • Patros RE (1994) Non neoplastic intestinal diseases. In: Sternbers SS, (ed) Diagnostic surgical pathology, 2nd ed, Raven Press, NY, pp 1358

    Google Scholar 

  • Quinn JM, Joyner C, Triffitt JT, Athanasou N (1992) PMMA-induced inflammatory macrophages resorb bone. J Bone Joint Surg [Br] 74B: 652–658

    Google Scholar 

  • Rae T (1977) Tolerance of mouse macrophages in vitro to barium sulphate used in orthopaedic bone cement J Biomed Mat Res 11: 839–846

    Article  CAS  Google Scholar 

  • Revell PA (1982) Tissue reactions to joint prostheses and the products of wear and corrosion. In: Berry CL (ed) Bone and Joint Disease, Current Topics in Pathology 17. Springer, Berlin, pp 37–101

    Google Scholar 

  • Roodman, G.D (1996) Advances in bone biology: the osteoclast. Endocrine Rev 17: 308–332

    CAS  Google Scholar 

  • Sabokbar A, Fujikawa Y, Brett J, Murray DW, Athanasou NA (1997) Increased osteoclastic differentiation by polymethylmethacrylate wear particle-associated macrophages: Inhibition by interleukin-4 and leukaemia inhibitory factor. Acta Orthop Scand 67 (6): 593–598

    Google Scholar 

  • Sabokbar A, Pandey R, Quinn J, Athanasou NA (1998) Osteoclastic differentiation by mononuclear phagocytes containing biomaterial particles. Arch Orthop Trauma Surg 184: 31–36

    Google Scholar 

  • Sasson L (1960) Entrace of barium into intestinal glands during barium enema. J Am Med Assoc 173: 343–345

    PubMed  CAS  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309–319

    Article  PubMed  CAS  Google Scholar 

  • Sokal RP, Rohlf FJ (1981) Biometry. 2nd ed, WH Freeman, NY, pp 321–367

    Google Scholar 

  • Udagawa N, Takahashi N, Akatsu T et al (1974) Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable micro-environment prepared by bone marrow-derived stromal cells (1990) Proc Natl Acad Sci USA 87: 7260–7264

    Article  Google Scholar 

  • Willert HG, Bertran H, Buchhorn GH (1990) Osteolysis in alloarthroplasty of the hip: The role of bone cement fragmentation. Clin Orthop Rel Res 258: 108–111

    Google Scholar 

  • Willert HG, Ludwig J, Semlitsch M (1974) Reaction of bone to methacrylate after hip arthroplasty. A long term gross, light microscopic and scanning electron microscopic study. J Bone Joint Surg [Am] 56A (7): 1368–1382

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sabokbar, A., Athanasou, N.A., Murray, D.W. (2001). Osteolysis Induced by Radio-Opaque Agents. In: Walenkamp, G.H.I.M., Murray, D.W., Henze, U., Kock, HJ. (eds) Bone Cements and Cementing Technique. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59478-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59478-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41677-7

  • Online ISBN: 978-3-642-59478-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics