Advertisement

Lung Recruitment and Stabilization in ARDS

  • T. Sottiaux
Conference paper
Part of the Yearbook of Intensive Care and Emergency Medicine 2001 book series (YEARBOOK, volume 2001)

Abstract

Ventilatory strategies preventing alveolar overdistension and cyclic end-expiratory collapse are now well accepted. Nevertheless, ventilation with low tidal volume may be associated with lung atelectasis and oxygenation impairment. Atelectasis may be due to compression phenomenon or to progressive alveolar gas absorption. To achieve optimal lung recruitment and to prevent collapse of lung units, several “mneuvers” are now proposed (prone position, sighs, sustained inflations). In this chapter, we will summarize some aspects regarding alveolar recruitment and stabilization during mechanical ventilation of patients with acute respiratory distress syndrome (ARDS).

Keywords

Acute Lung Injury Acute Respiratory Distress Syndrome Respir Crit Acute Respiratory Distress Syndrome Patient Recruitment Maneuver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pelosi P, D’Andrea L, Vitale G, Pesenti A, Gattinoni L (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149:8–13PubMedGoogle Scholar
  2. 2.
    Malbouisson L, Busch CJ, Puybasset L, Lu Q, Cluzel P, Rouby JJ and the CT Scan ARDS Study group (2000) Role of the heart in the loss of aeration characterizing lower lobes in acute respiratory distress syndrome. Am J Respir Crit Care Med 161:2005–2012PubMedGoogle Scholar
  3. 3.
    Puybasset L, Cluzel P, Chao N, Slutsky AS, Coriat P, Rouby JJ and the CT Scan ARDS Study Group (1998) A computed tomography scan assessment of regional lung volume in acute lung injury. Am J Respir Crit Care Med 158:1644–1655PubMedGoogle Scholar
  4. 4.
    Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ and the CT Scan ARDS Study group (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. Intensive Care Med 26:857–869PubMedCrossRefGoogle Scholar
  5. 5.
    Kunst PW, Böhm SH, Vasquez de Anda G, et al (2000) Regional pressure volume curves by electrical impedance tomography in a model a acute lung injury. Crit Care Med 28:178–183PubMedCrossRefGoogle Scholar
  6. 6.
    Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814PubMedGoogle Scholar
  7. 7.
    Van der Kloot TE, Blanch L, Youngblood AM, et al (2000) Recruitment maneuvers in three experimental models of acute lung injury. Effect on lung volume and gas exchange. Am J Respir Crit Care Med 161:1485–1494PubMedGoogle Scholar
  8. 8.
    Rimensberger PC, Pristine G, Mullen JB, Cox PN, Slutsky AS (1999) Lung recruitment during small tidal volume ventilation allows minimal positive end-expiratory pressure without augmenting lung injury. Crit Care Med 27:1940–1945PubMedCrossRefGoogle Scholar
  9. 9.
    Amato MB, Barbas CS, Medeiros DM, et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152:1835–1846PubMedGoogle Scholar
  10. 10.
    Amato MBP, Barbas CSV, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar
  11. 11.
    Stewart TE, Meade MO, Cook DJ, et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. N Engl J Med 338: 355–361PubMedCrossRefGoogle Scholar
  12. 12.
    Brochard L, Roudot-Thoraval F, Roupie E, et al (1998) Tidal volume reduction in acute respiratory distress syndrome (ARDS): a multicenter randomized study. Am J Respir Crit Care Med 158:1831–1838PubMedGoogle Scholar
  13. 13.
    The acute respiratory distress syndrome network (2000) Ventilation with low tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  14. 14.
    Artiga A, Bernard GR, Carlet J, et al (1998) The American-European Consensus Conference on ARDS, Part 2. Am J Respir Crit Care Med 157:1332–1337Google Scholar
  15. 15.
    Pelosi P, Cadringher P, Bottino N, et al (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159:872–880PubMedGoogle Scholar
  16. 16.
    Santos C, Ferrer M, Roca J, et al (2000) Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med 161:26–31PubMedGoogle Scholar
  17. 17.
    Böhm SH, Vasquez de Anda GF, Lachmann B (1998) The open lung concept. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Berhn, pp 430–440Google Scholar
  18. 18.
    Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18:319–321PubMedCrossRefGoogle Scholar
  19. 19.
    Svantesson C, Sigurdsson S, Larsson A, Jonson B (1998) Effects of recruitment of collapsed lung units on the elastic pressure-volume relationship in anaesthetised healthy adults. Acta Anaesthesiol Scand 42:1149–1156PubMedCrossRefGoogle Scholar
  20. 20.
    Jonson B, Richard JC, Strauss C, Mancebo J, Lemaire F, Brochard L (1999) Pressure-Volume curves and compliance in acute lung injury. Evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178PubMedGoogle Scholar
  21. 21.
    Ghelucci GL, Dall’Ava-Santucci J, Dhainaut JF, et al (2000) Association of PEEP with two different inflation volumes in ARDS patients: effects on passive lung deflation and alveolar recruitment. Intensive Care Med 26:870–877CrossRefGoogle Scholar
  22. 22.
    Hartog A, Vasquez de Anda GF, Gommers D, Kaisers U, Lachmann B (2000) At surfactant deficiency, application of “the open lung concept” prevents protein leakage and attenuates changes in lung mechanics. Crit Care Med 28:1450–1454PubMedCrossRefGoogle Scholar
  23. 23.
    Rimensberger PC, Cox PN, Frndova H, Bryan AC (1999) The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med 27:1946–1952PubMedCrossRefGoogle Scholar
  24. 24.
    Rimensberger PC, Pache JC, McKerlie C, Frndova H, Cox PN (2000) Lung recruitment and lung volume maintenance: a strategy for improving oxygenation and preventing lung injury during both conventional mechanical ventilation and high-frequency oscillation. Intensive Care Med 26:745–755PubMedCrossRefGoogle Scholar
  25. 25.
    Guérin C, Badet M, Rosselli S, et al (1999) Effects of prone position on alveolar recruitment and oxygenation in acute injury. Intensive Care Med 25:1222–1230PubMedCrossRefGoogle Scholar
  26. 26.
    Cakar N, Van der Kloot T, Youngblood M, Adams A, Nahum A. (2000) Oxygenation response to a recruitment maneuver during supine and prone positions in an oleic acid-induced lung injury model Am J Respir Crit Care Med 161:1949–1956PubMedGoogle Scholar
  27. 27.
    Broccard A, Shapiro S, Schmitz L, et al (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28:295–303PubMedCrossRefGoogle Scholar
  28. 28.
    Nakos G, Tsangaris I, Kostanti E, et al (2000) Effect of the prone position on patients with hydrostatic pulmonary edema compared with patients with acute respiratory distress syndrome and pulmonary fibrosis. Am J Respir Crit Care Med 161:360–368PubMedGoogle Scholar
  29. 29.
    Albert RK, Hubmayr RF (2000) The prone position eliminates compression of the lungs by the heart. Am J Respir Crit Care Med 161:1660–1665PubMedGoogle Scholar
  30. 30.
    Jolliet P, Bulpa P, Chevrolet JC (1998) Effects of the prone position on gas exchange and hemodynamics in severe acute respiratory distress syndrome. Crit Care Med 26:1977–1985PubMedCrossRefGoogle Scholar
  31. 31.
    Curley MAQ, Thompson JE, Arnold JH (2000) The effects of early and repeated prone positioning in pediatric patients with acute lung injury. Chest 118:156–163PubMedCrossRefGoogle Scholar
  32. 32.
    Borelli M, Lampatti L, Vascotto E, Fumagalli R, Pesenti A (2000) Hemodynamic and gas exchange response to inhaled nitric oxide and prone positioning in acute respiratory distress syndrome patients. Crit Care Med 28:2707–2712PubMedCrossRefGoogle Scholar
  33. 33.
    Pelosi P, Tubiolo D, Mascheroni D, et al (1998) Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Respir Crit Care Med 157:387–393PubMedGoogle Scholar
  34. 34.
    Pelosi P, Cadringher P, Bottino N, et al (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159:872–880PubMedGoogle Scholar
  35. 35.
    Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158:3–11PubMedGoogle Scholar
  36. 36.
    Muscedere JG, Mullen JBM, Gan K (1994) Tidal ventilation at low airway pressure can augment lung injury. Am J Respir Crit Care Med 149:1327–1334PubMedGoogle Scholar
  37. 37.
    Ruiz-Bailen M, Fernandez-Mondejar E, Hurtado-Ruiz B, et al (1999) Immediate application of positive-end expiratory pressure is more effective than delayed positive-end expiratory pressure to reduce extravascular lung water. Crit Care Med 27:380–384PubMedCrossRefGoogle Scholar
  38. 38.
    Medoff BD, Harris RS, Kesselman H, Venegas J, Amato MBP, Hess D (2000) Use of recruitment maneuvers and high positive end-expiratory pressure in a patient with acute respiratory distress syndrome. Crit Care Med 28:1210–1216PubMedCrossRefGoogle Scholar
  39. 39.
    Foti G, Cereda M, Sparacino ME, De Marchi I, Villa F, Pesenti A (2000) Effects of periodic lung recruitment maneuvers on gas exchange and respiratory mechanics in mechanically ventilated acute respiratory distress syndrome (ARDS) patients. Intensive Care Med 26:501–507PubMedCrossRefGoogle Scholar
  40. 40.
    Rothen HU, Sporre B, Engberg G, Wegenius G, Hedenstierna G (1993) Reexpansion of atelectasis during general anaesthesia: a computed tomography study Br J Anaesth 71:788–795PubMedCrossRefGoogle Scholar
  41. 41.
    Lapinsky SE, Aubin M, Mehta S, Boiteau P, Slutsky A (1999) Safety and efficacy of a sustained inflation for alveolar recruitment in adults with respiratory failure. Intensive Care Med 25: 1297–1301PubMedCrossRefGoogle Scholar
  42. 42.
    Putensen C, Rasanen J, Lopez FA (1994) Ventilation-perfusion distributions during mechanical ventilation with surimposed spontaneous breathing in canine lung injury. Am J Respir Crit Care Med 150:101–108PubMedGoogle Scholar
  43. 43.
    Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J (1999) Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 159:1241–1248PubMedGoogle Scholar
  44. 44.
    Rouby JJ, Puybasset L, Cluzel P, et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. IL Physiological correlation and definition of an ARDS severity score. Intensive Care Med 26:1046–1056PubMedCrossRefGoogle Scholar
  45. 45.
    Mink SN, Light RB, Wood LD (1981) Effect of pneumococcal lobar pneumonia on canine lung mechanics. J Appl Physiol 50:283–291PubMedGoogle Scholar
  46. 46.
    Puybasset L, Gusman P, Muller JC, Cluzel P, Coriat P, Rouby JJ and the CT Scan ARDS Study Group (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. Intensive Care Med 26:1215–1227PubMedCrossRefGoogle Scholar
  47. 47.
    Vieira SRR, Puybasset L, Richecoeur J, et al (1998) A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med 158: 1571–1577PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • T. Sottiaux

There are no affiliations available

Personalised recommendations