Advertisement

Determination of Afterload: A Challenge for Echocardiography?

  • J. Heerman
  • C. Roosens
  • J. Poelaert
Conference paper
Part of the Yearbook of Intensive Care and Emergency Medicine 2001 book series (YEARBOOK, volume 2001)

Abstract

Hemodynamic monitoring is often confined to pressure measurements and determination of cardiac output. Although the merits of these measures cannot be denied, currently available hemodynamic monitoring permits an approach that allows measurement of the different features of the Frank-Starling mechanism: contractility, preload and afterload.

Keywords

Mean Arterial Pressure Input Impedance Arterial Elastance Arterial Load Total Arterial Compliance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gorcsan J, Morita S, Mandarino W, et al (1993) Two-dimensional echocardiographic automated border detection accurately reflects changes in left ventricular volume. J Am Soc Echocardiogr 6:482–489PubMedGoogle Scholar
  2. 2.
    Schmidt C, Roosens C, Struys M, et al (1999) Contractility in humans after coronary artery surgery. Anesthesiology 91:58–70PubMedCrossRefGoogle Scholar
  3. 3.
    Milnor W (1990) Properties of cardiac cells. In: Milnor W (ed) Cardiovascular Physiology. Oxford University Press, Oxford, pp 62–102Google Scholar
  4. 4.
    Milnor W (1990) The heart as a pump. In: Milnor W (ed) Cardiovascular Physiology. Oxford University Press, Oxford, pp 111–139Google Scholar
  5. 5.
    Little W, Braunwald E (1997) Assessment of cardiac function. In: Braunwald E (ed) Heart Disease: A Textbook of Cardiovascular Medicine, 5th edn. W.B. Saunders Company, New York, pp 421–444Google Scholar
  6. 6.
    Kelly R, Ting C, Yang T, et al (1992) Effective arterial elastance as index of arterial vascular load in humans. Circulation 86:513–521PubMedGoogle Scholar
  7. 7.
    Milnor W (1975) Arterial impedance as ventricular afterload. Circ Res 36:565–570PubMedGoogle Scholar
  8. 8.
    Hettrick D, Pagel P, Warltier D (1995) Differential effects of isoflurane and halothane on aortic input impedance quantified using a three-element windkessel model. Anesthesiology 83: 361–373PubMedCrossRefGoogle Scholar
  9. 9.
    Sharp K, Pantalos G, Minich L, Tani L, McGough E, Hawkins J (2000) Aortic input impedance in infants and children. J Appl Physiol 88:2227–2239PubMedGoogle Scholar
  10. 10.
    Wesseling K, Jansen J, Settels J, Schreuder J (1993) Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol 74:2566–2573PubMedGoogle Scholar
  11. 11.
    Stergiopulos N, Segers P, Westerhof N (1999) Use of pulse pressure method for estimating total arterial compliance in vivo. Am J Physiol 276: H424–H428PubMedGoogle Scholar
  12. 12.
    Segers P, Verdonck P, Deryck Y, et al (1999) Pulse pressure method and the area method for the estimation of total arterial compliance in dogs: sensitivity to wave reflection. Ann Biomed Eng 27:480–485PubMedCrossRefGoogle Scholar
  13. 13.
    Molino P, Cerutti C, Julien C, Cuisinaud G, Gustin M, Paultre C (1998) Beat-to-beat estimation of windkessel model parameters in conscious rats. Am J Physiol 274:H171–H177PubMedGoogle Scholar
  14. 14.
    Segers P, Steendijk P, Stergiopulos N, Westerhof N (2001) Predicting systolic and diastolic aortic blood pressure and stroke volume in the intact sheep. J Biomech (in press)Google Scholar
  15. 15.
    Poelaert J, Schmidt C, Van Aken H, Hinder F, Mollhoff T, Loick H (1999) A comparison of trans-oesophageal achocardiographic doppler across the aortic valve and the thermodilution technique for estimating cardiac output. Anaesthesia 54:128–136PubMedCrossRefGoogle Scholar
  16. 16.
    Darmon P, Hillel Z, Mogtader A, Mindich B, Thys D (1994) Cardiac output by transesophageal echocardiography using continuous-wave doppler across the aortic valve. Anesthesiology 80: 796–805PubMedCrossRefGoogle Scholar
  17. 17.
    Declerck C, Hillel Z, Shih H, Kuroda M, Connery C, Thys D (1998) A comparison of left ventricular performance indices measured by transoesophageal echocardiography with automated border detection. Anesthesiology 89:341–349PubMedCrossRefGoogle Scholar
  18. 18.
    Atkins B, Silvestry S, Davis J, Kisslo J, Glower D (1999) Means of load variation during echocardiographic assessment of the Frank-Starling relatioship. J Am Soc Echocardiogr 12:792–800PubMedCrossRefGoogle Scholar
  19. 19.
    Nichols W, Conti C, Walker W, Milnor W (1977) Input impedance of the systemic circulation in man. Circ Res 40:451–458PubMedGoogle Scholar
  20. 20.
    Murgo J, Westerhof N, Giolma J, Altobelli S (1980) Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62:105–116PubMedGoogle Scholar
  21. 21.
    Langewouters G, Wessehng K, Goedhard W (1984) The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech 17: 425–435PubMedCrossRefGoogle Scholar
  22. 22.
    Sunagawa K, Sagawa K, Maughan W (1984) Ventricular interaction with the loading system. Ann Biomed Eng 12:163–189PubMedCrossRefGoogle Scholar
  23. 23.
    Kass D, Kelly R (1992) Ventriculo-arterial couphng: concepts, assumptions, and apphcations. Ann Biomed Eng 20:41–62PubMedCrossRefGoogle Scholar
  24. 24.
    Hettrick D, Pagel P, Warltier D (1997) Alterations in canine left ventricular-arterial coupling and mechanical efficiency produced by propofol. Anesthesiology 86:1088–1093PubMedCrossRefGoogle Scholar
  25. 25.
    Deryck Y, Brimouille S, Maggiorini M, de Canniere D, Naeije R (1996) Systemic vascular effects of isoflurane versus propofol anesthesia in dogs. Anesth Analg 83:958–964PubMedGoogle Scholar
  26. 26.
    Hettrick D, Pagel P, Warltier D (1996) Desflurane, sevoflurane, and isoflurane impair canine left ventricular-arterial coupling and mechanical efficiency. Anesthesiology 85:403–413PubMedCrossRefGoogle Scholar
  27. 27.
    Shih H, Hillel Z, Declerck C, Anagnostopoulos C, Kuroda M, Thys D (1997) An algorithm for real time, continuous evaluation of left ventricular mechanics by single-beat estimation of arterial and ventricular elastance. J Clin Monit 13:157–170PubMedCrossRefGoogle Scholar
  28. 28.
    Van Gorp A, Van Ingen Schenau D, Willigers J, et al (1996) A technique to assess aortic distensibility and compliance in anesthetized and awake rats. Am J Physiol 270: H780–H786PubMedGoogle Scholar
  29. 29.
    Cholley B, Shroff S, Korcarz C, Lang R (1996) Aortic elastic properties with transoesophageal echocardiography with automated border detection: vahdation according to regional differences between proximal and distal descending thoracic aorta. J Am Soc Echocardiogr: 539–548Google Scholar
  30. 30.
    Langewouters G, Wesseling K, Goedhard W (1985) The pressure dependent dynamic elasticity of 35 thoracic and 16 abdominal human aortas in vitro described by a five component model. J Biomech 18:613–620PubMedCrossRefGoogle Scholar
  31. 31.
    Cholley B, Lang R, Berger D, Korcarz C, Payen D, Shroff S (1995) Aherations in systemic arterial mechanical properties during septic shock: role of fluid resuscitation. Am J Physiol 269: H375–H384PubMedGoogle Scholar
  32. 32.
    Hayashi K (1993) Experimental approaches on measuring the mechanical properties and constutive laws of arterial walls. J Biomech Eng 115:481–488PubMedCrossRefGoogle Scholar
  33. 33.
    Liu Z, Brin K, Yin F (1988) Estimation of total arterial compliance: an improved method and evaluation of current methods. Am J Physiol 251: H588–H600Google Scholar
  34. 34.
    Stefanadis C, Dernellis J, Tsiamis E, Diamantopoulos L, Michaelides A, Toutouzas P (2000) Assesment of aortic hne of elasticity using polynomial regression analysis. Circulation 101: 1819–1825PubMedGoogle Scholar
  35. 35.
    Reichek N, Wilson J, St John Sutton M, Plappert T, Goldberg S, Hirshfeld J (1982) Noninvasive determination of left ventricular end-systolic stress: vahdation of the method and initial application. Circulation 65:99–108PubMedCrossRefGoogle Scholar
  36. 36.
    Grossman W, Jones D, Mc Laurin L (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56:56–64PubMedCrossRefGoogle Scholar
  37. 37.
    Douglas P, Reichek N, Plappert T, Muhammad A, St John Sutton M (1987) Comparison of echocardiographic methods for measurement of left ventricular shortening and wall stress. J Am Coll Cardiol 9:945–949PubMedCrossRefGoogle Scholar
  38. 38.
    Lang R, Borow K, Neumann A, Janzen D (1986) Systemic vascular resistance: an unrehable index of left ventricular afterload. Circulation 74:1114–1123PubMedCrossRefGoogle Scholar
  39. 39.
    Greim C, Roewer N, Schulte J (1995) Assessment of changes in left ventricular wall stress from the end-systolic pressure-area product. Br J Anaesth 75:583–587PubMedGoogle Scholar
  40. 40.
    Poortmans G, Poelaert J (1999) Transesophageal echocardiographic evaluation of left ventricular function. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer-Verlag, Heidelberg, pp 468–481Google Scholar
  41. 41.
    Schmidt C, Hinder F, Van Aken H, Möllhoff T, Poelaert J (2000) Evaluation of global left ventricular systohc function. In: Poelaert J, Skarvan K (eds) Transoesophageal Echocardiography in Anaethesia. BMJ Books, London, pp 37–54Google Scholar
  42. 42.
    Greim C, Roewer N, Meissner C, Bause H, Schulte J (1995) Abschätzung akuter linksventrikulä-rer Nachlaständerungen. Anaesthesist 44:108–115PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • J. Heerman
  • C. Roosens
  • J. Poelaert

There are no affiliations available

Personalised recommendations