Computing Resolutions Over Finite p-Groups

  • Johannes Grabmeier
  • Larry A. Lambe
Conference paper


A uniform and constructive approach for the computation of resolutions and for (co)homology computations for any finite p-group is detailed. The resolutions we construct ([32]) are, as vector spaces, as small as the minimal resolution of IFp over the elementary abelian p-group of the same order as the group under study. Our implementations are based on the development of sophisticated algebraic data structures. Applications to calculating functional cocycles are given and the possibility of constructing interesting codes using such methods is presented.


Free Resolution Minimal Resolution Elementary Abelian Group Chain Homotopy Computing Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Donald W. Barnes and Larry A. Lambe. A fixed point approach to homological perturbation theory. Proc. Amer. Math. Soc., 112 (3): 881–892, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    R. Brown. The twisted Eilenberg-Zilber theorem. In Simposio di Topologia (Messina, 1964), pages 33–37. Edizioni Oderisi, Gubbio, 1965.Google Scholar
  3. 3.
    Henri Cartan and Samuel Eilenberg. Homological algebra. Princeton University Press, Princeton, N. J., 1956.Google Scholar
  4. 4.
    Henri Cartan, J. C. Moore, R. Thom, and J-P. Serre. Algèbras d’Eilenberg- MacLane et homotopie. 2ieme ed., revue et corrig ee. Secretariat mathematique ( Hektograph ), Paris, 1956.Google Scholar
  5. 5.
    Torsten Ekedahl, Johannes Grabmeier, and Larry Lambe. A Generic Language for algebraic computations, 2000. In preparation.Google Scholar
  6. 6.
    G. Ellis and I. Kholodna. Second cohomology of finite groups with trivial coefficients. Homology, Homotopy & Appl, 1: 163–168, 1999.MathSciNetzbMATHGoogle Scholar
  7. 7.
    D. L. Flannery. Transgression and the calculation of cocyclic matrices. Aus- tralas. J. Combin., 11: 67–78, 1995.Google Scholar
  8. 8.
    D. L. Flannery. Calculation of cocyclic matrices. J. Pure Appl. Algebra, 112 (2): 181 — 190, 1996.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    D. L. Flannery, K.J. Horadam, and W. de Launey. Cocyclic hadamard matrices and difference sets. Discrete Appl Math., 102: 47–61, 2000.Google Scholar
  10. 10.
    D. L. Flannery and E. A. O’Brien. Computing 2-cocycles for central extensions and relative difference sets. Comm. Algebra, 28 (4): 1939–1955, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics. Addison- Wesley, Reading, Massachusetts, 1989.Google Scholar
  12. 12.
    V. K. A. M. Gugenheim. On the chain-complex of a fibration. Illinois J. Math., 16: 398–414, 1972.MathSciNetzbMATHGoogle Scholar
  13. 13.
    V. K. A. M. Gugenheim and L. A. Lambe. Perturbation theory in differential homological algebra. I. Illinois J. Math., 33 (4): 566 - 582, 1989.Google Scholar
  14. 14.
    V. K. A. M. Gugenheim, L. A. Lambe, and J. D. Stasheff. Perturbation theory in differential homological algebra. II. Illinois J. Math., 35 (3): 357–373, 1991.Google Scholar
  15. 15.
    K. J. Horadam and W. de Launey. Cocyclic development of designs. J. Algebraic Combin., 2 (3): 267–290, 1993.Google Scholar
  16. 16.
    K. J. Horadam and W. de Launey. Erratum: “Cocylic development of designs”. J. Algebraic Combin., 3(1):129, 1994.Google Scholar
  17. 17.
    K. J. Horadam and W. de Launey. Generation of cocyclic Hadamard matrices. In Computational algebra and number theory (Sydney, 1992), volume 325 of Math. Appl, pages 279-290. Kluwer Acad. Publ., Dordrecht, 1995.Google Scholar
  18. 18.
    K. J. Horadam and A. A. I. Perera. Codes from cocycles. In Lecture Notes in Computer Science, volume 1255, pages 151 - 163. Springer-Verlag, Berlin- Heidelberg-New York, 1997.Google Scholar
  19. 19.
    Johannes Huebschmann. The homotopy type of FΨq. The complex and sym- plectic cases. In Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), pages 487-518. Amer. Math. Soc., Providence, R.I., 1986.Google Scholar
  20. 20.
    Johannes Huebschmann. Perturbation theory and free resolutions for nilpotent groups of class 2. J. Algebra, 126 (2): 348 - 399, 1989.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Johannes Huebschmann and Tornike Kadeishvili. Small models for chain algebras. Math. Z., 207 (2): 245 - 280, 1991.Google Scholar
  22. 22.
    Bertram Huppert and Norman Blackburn. Finite groups. II. Springer-Verlag, Berlin-New York, 1982. Grundlehren der Mathematischen Wissenschaften, Band 242.Google Scholar
  23. 23.
    N. Jacobson. Restricted Lie algebras of characteristic p. Trans. Amer. Math. Soc50: 15–25, 1941.Google Scholar
  24. 24.
    Richard D. Jenks and Robert S. Sutor. Axiom. The scientific computation system. Springer-Verlag, Berlin, Heidelberg, New York, 1992.Google Scholar
  25. 25.
    S. A. Jennings. The structure of the group ring of a p-group over a modular field. Trans. Amer. Math. Soc., 50: 175 – 185, 1941.MathSciNetGoogle Scholar
  26. 26.
    Leif Johansson and Larry Lambe. Transferring algebra structures up to homology equivalence. Math. Scand., 88 (2), 2001.Google Scholar
  27. 27.
    Leif Johansson, Larry Lambe, and Emil Sköldberg. On constructing resolutions over the polynomial algebra, 2000. Preprint.Google Scholar
  28. 28.
    Larry Lambe. Next generation computer algebra systems AXIOM and the scratchpad concept: applications to research in algebra. In Analysis, algebra, and computers in mathematical research (Lulea, 1992), volume 156 of Lecture Notes in Pure and Appl. Math., pages 201 - 222. Dekker, New York, 1994.Google Scholar
  29. 29.
    Larry Lambe. The 1996 Adams Lectures at Manchester University: New computational methods in algebra and topology, May 20 1996.Google Scholar
  30. 30.
    Larry Lambe and Jim Stasheff. Applications of perturbation theory to iterated fibrations. Manuscripta Math., 58 (3): 363 - 376, 1987.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Larry A. Lambe. Resolutions via homological perturbation. J. Pure Appl. Algebra, 12: 71–87, 1991.zbMATHGoogle Scholar
  32. 32.
    Larry A. Lambe. Homological perturbation theory, Hochschild homology, and formal groups. In Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), volume 134 of Contemp. Math., pages 183 - 218. Amer. Math. Soc., Providence, RI, 1992.Google Scholar
  33. 33.
    Larry A. Lambe. Resolutions which split off of the bar construction. J. Pure Appl. Algebra, 84 (3): 311 - 329, 1993.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Saunders Mac Lane. Homology. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition.Google Scholar
  35. 35.
    J. Peter May. The cohomology of restricted Lie algebras and of Hopf algebras. Bull. Amer. Math. Soc., 71: 372 - 377, 1965.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    D. Quillen. On the associated graded ring of a group ring. J. Algebra, 10:411- 418, 1968.Google Scholar
  37. 37.
    Jean-Pierre Serre. Lie algebras and Lie groups. 1964 lectures, given at Harvard University, 2nd ed., volume 1500 of Lecture Notes in Mathematics. Springer- Verlag, Berlin-Heidelberg-New York, 1992.Google Scholar
  38. 38.
    C.T.C. Wall. Resolutions for extensions of groups. Proc. Phil. Soc., 57: 251 - 255, 1961.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Johannes Grabmeier
    • 1
  • Larry A. Lambe
    • 2
  1. 1.IBM Deutschland Informationssysteme GmbHHeidelbergGermany
  2. 2.Centre for Innovative Computation University of WalesBangorUK

Personalised recommendations